Therese Featherston, Martina Paumann-Page, Mark B Hampton
{"title":"黑色素瘤氧化还原生物学和耐药性的出现。","authors":"Therese Featherston, Martina Paumann-Page, Mark B Hampton","doi":"10.1016/bs.acr.2024.06.004","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma is the deadliest form of skin cancer, with the loss of approximately 60,000 lives world-wide each year. Despite the development of targeted therapeutics, including compounds that have selectivity for mutant oncoproteins expressed only in cancer cells, many patients are either unresponsive to initial therapy or their tumors acquire resistance. This results in five-year survival rates of below 25%. New strategies that either kill drug-resistant melanoma cells or prevent their emergence would be extremely valuable. Melanoma, like other cancers, has long been described as being under increased oxidative stress, resulting in an increased reliance on antioxidant defense systems. Changes in redox homeostasis are most apparent during metastasis and during the metabolic reprogramming associated with the development of treatment resistance. This review discusses oxidative stress in melanoma, with a particular focus on targeting antioxidant pathways to limit the emergence of drug resistant cells.</p>","PeriodicalId":94294,"journal":{"name":"Advances in cancer research","volume":"162 ","pages":"145-171"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melanoma redox biology and the emergence of drug resistance.\",\"authors\":\"Therese Featherston, Martina Paumann-Page, Mark B Hampton\",\"doi\":\"10.1016/bs.acr.2024.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Melanoma is the deadliest form of skin cancer, with the loss of approximately 60,000 lives world-wide each year. Despite the development of targeted therapeutics, including compounds that have selectivity for mutant oncoproteins expressed only in cancer cells, many patients are either unresponsive to initial therapy or their tumors acquire resistance. This results in five-year survival rates of below 25%. New strategies that either kill drug-resistant melanoma cells or prevent their emergence would be extremely valuable. Melanoma, like other cancers, has long been described as being under increased oxidative stress, resulting in an increased reliance on antioxidant defense systems. Changes in redox homeostasis are most apparent during metastasis and during the metabolic reprogramming associated with the development of treatment resistance. This review discusses oxidative stress in melanoma, with a particular focus on targeting antioxidant pathways to limit the emergence of drug resistant cells.</p>\",\"PeriodicalId\":94294,\"journal\":{\"name\":\"Advances in cancer research\",\"volume\":\"162 \",\"pages\":\"145-171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in cancer research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.acr.2024.06.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cancer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.acr.2024.06.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Melanoma redox biology and the emergence of drug resistance.
Melanoma is the deadliest form of skin cancer, with the loss of approximately 60,000 lives world-wide each year. Despite the development of targeted therapeutics, including compounds that have selectivity for mutant oncoproteins expressed only in cancer cells, many patients are either unresponsive to initial therapy or their tumors acquire resistance. This results in five-year survival rates of below 25%. New strategies that either kill drug-resistant melanoma cells or prevent their emergence would be extremely valuable. Melanoma, like other cancers, has long been described as being under increased oxidative stress, resulting in an increased reliance on antioxidant defense systems. Changes in redox homeostasis are most apparent during metastasis and during the metabolic reprogramming associated with the development of treatment resistance. This review discusses oxidative stress in melanoma, with a particular focus on targeting antioxidant pathways to limit the emergence of drug resistant cells.