Ernesto Lopes Pinheiro-Junior, Ehsan Alirahimi, Steve Peigneur, Jörg Isensee, Susanne Schiffmann, Pelin Erkoc, Robert Fürst, Andreas Vilcinskas, Tobias Sennoner, Ivan Koludarov, Benjamin-Florian Hempel, Jan Tytgat, Tim Hucho, Björn M von Reumont
{"title":"从remipede毒液中演化出的不同xibalbin变体可抑制钾通道并激活PKA-II和Erk1/2信号传导。","authors":"Ernesto Lopes Pinheiro-Junior, Ehsan Alirahimi, Steve Peigneur, Jörg Isensee, Susanne Schiffmann, Pelin Erkoc, Robert Fürst, Andreas Vilcinskas, Tobias Sennoner, Ivan Koludarov, Benjamin-Florian Hempel, Jan Tytgat, Tim Hucho, Björn M von Reumont","doi":"10.1186/s12915-024-01955-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The identification of novel toxins from overlooked and taxonomically exceptional species bears potential for various pharmacological applications. The remipede Xibalbanus tulumensis, an underwater cave-dwelling crustacean, is the only crustacean for which a venom system has been described. Its venom contains several xibalbin peptides that have an inhibitor cysteine knot (ICK) scaffold.</p><p><strong>Results: </strong>Our screenings revealed that all tested xibalbin variants particularly inhibit potassium channels. Xib<sub>1</sub> and xib<sub>13</sub> with their eight-cysteine domain similar to spider knottins also inhibit voltage-gated sodium channels. No activity was noted on calcium channels. Expanding the functional testing, we demonstrate that xib<sub>1</sub> and xib<sub>13</sub> increase PKA-II and Erk1/2 sensitization signaling in nociceptive neurons, which may initiate pain sensitization. Our phylogenetic analysis suggests that xib<sub>13</sub> either originates from the common ancestor of pancrustaceans or earlier while xib<sub>1</sub> is more restricted to remipedes. The ten-cysteine scaffolded xib<sub>2</sub> emerged from xib<sub>1</sub>, a result that is supported by our phylogenetic and machine learning-based analyses.</p><p><strong>Conclusions: </strong>Our functional characterization of synthesized variants of xib<sub>1</sub>, xib<sub>2</sub>, and xib<sub>13</sub> elucidates their potential as inhibitors of potassium channels in mammalian systems. The specific interaction of xib<sub>2</sub> with Kv1.6 channels, which are relevant to treating variants of epilepsy, shows potential for further studies. At higher concentrations, xib<sub>1</sub> and xib<sub>13</sub> activate the kinases PKA-II and ERK1/2 in mammalian sensory neurons, suggesting pain sensitization and potential applications related to pain research and therapy. While tested insect channels suggest that all probably act as neurotoxins, the biological function of xib<sub>1</sub>, xib<sub>2,</sub> and xib<sub>13</sub> requires further elucidation. A novel finding on their evolutionary origin is the apparent emergence of X. tulumensis-specific xib<sub>2</sub> from xib<sub>1</sub>. Our study is an important cornerstone for future studies to untangle the origin and function of these enigmatic proteins as important components of remipede but also other pancrustacean and arthropod venoms.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288129/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diversely evolved xibalbin variants from remipede venom inhibit potassium channels and activate PKA-II and Erk1/2 signaling.\",\"authors\":\"Ernesto Lopes Pinheiro-Junior, Ehsan Alirahimi, Steve Peigneur, Jörg Isensee, Susanne Schiffmann, Pelin Erkoc, Robert Fürst, Andreas Vilcinskas, Tobias Sennoner, Ivan Koludarov, Benjamin-Florian Hempel, Jan Tytgat, Tim Hucho, Björn M von Reumont\",\"doi\":\"10.1186/s12915-024-01955-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The identification of novel toxins from overlooked and taxonomically exceptional species bears potential for various pharmacological applications. The remipede Xibalbanus tulumensis, an underwater cave-dwelling crustacean, is the only crustacean for which a venom system has been described. Its venom contains several xibalbin peptides that have an inhibitor cysteine knot (ICK) scaffold.</p><p><strong>Results: </strong>Our screenings revealed that all tested xibalbin variants particularly inhibit potassium channels. Xib<sub>1</sub> and xib<sub>13</sub> with their eight-cysteine domain similar to spider knottins also inhibit voltage-gated sodium channels. No activity was noted on calcium channels. Expanding the functional testing, we demonstrate that xib<sub>1</sub> and xib<sub>13</sub> increase PKA-II and Erk1/2 sensitization signaling in nociceptive neurons, which may initiate pain sensitization. Our phylogenetic analysis suggests that xib<sub>13</sub> either originates from the common ancestor of pancrustaceans or earlier while xib<sub>1</sub> is more restricted to remipedes. The ten-cysteine scaffolded xib<sub>2</sub> emerged from xib<sub>1</sub>, a result that is supported by our phylogenetic and machine learning-based analyses.</p><p><strong>Conclusions: </strong>Our functional characterization of synthesized variants of xib<sub>1</sub>, xib<sub>2</sub>, and xib<sub>13</sub> elucidates their potential as inhibitors of potassium channels in mammalian systems. The specific interaction of xib<sub>2</sub> with Kv1.6 channels, which are relevant to treating variants of epilepsy, shows potential for further studies. At higher concentrations, xib<sub>1</sub> and xib<sub>13</sub> activate the kinases PKA-II and ERK1/2 in mammalian sensory neurons, suggesting pain sensitization and potential applications related to pain research and therapy. While tested insect channels suggest that all probably act as neurotoxins, the biological function of xib<sub>1</sub>, xib<sub>2,</sub> and xib<sub>13</sub> requires further elucidation. A novel finding on their evolutionary origin is the apparent emergence of X. tulumensis-specific xib<sub>2</sub> from xib<sub>1</sub>. Our study is an important cornerstone for future studies to untangle the origin and function of these enigmatic proteins as important components of remipede but also other pancrustacean and arthropod venoms.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288129/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-024-01955-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-01955-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Diversely evolved xibalbin variants from remipede venom inhibit potassium channels and activate PKA-II and Erk1/2 signaling.
Background: The identification of novel toxins from overlooked and taxonomically exceptional species bears potential for various pharmacological applications. The remipede Xibalbanus tulumensis, an underwater cave-dwelling crustacean, is the only crustacean for which a venom system has been described. Its venom contains several xibalbin peptides that have an inhibitor cysteine knot (ICK) scaffold.
Results: Our screenings revealed that all tested xibalbin variants particularly inhibit potassium channels. Xib1 and xib13 with their eight-cysteine domain similar to spider knottins also inhibit voltage-gated sodium channels. No activity was noted on calcium channels. Expanding the functional testing, we demonstrate that xib1 and xib13 increase PKA-II and Erk1/2 sensitization signaling in nociceptive neurons, which may initiate pain sensitization. Our phylogenetic analysis suggests that xib13 either originates from the common ancestor of pancrustaceans or earlier while xib1 is more restricted to remipedes. The ten-cysteine scaffolded xib2 emerged from xib1, a result that is supported by our phylogenetic and machine learning-based analyses.
Conclusions: Our functional characterization of synthesized variants of xib1, xib2, and xib13 elucidates their potential as inhibitors of potassium channels in mammalian systems. The specific interaction of xib2 with Kv1.6 channels, which are relevant to treating variants of epilepsy, shows potential for further studies. At higher concentrations, xib1 and xib13 activate the kinases PKA-II and ERK1/2 in mammalian sensory neurons, suggesting pain sensitization and potential applications related to pain research and therapy. While tested insect channels suggest that all probably act as neurotoxins, the biological function of xib1, xib2, and xib13 requires further elucidation. A novel finding on their evolutionary origin is the apparent emergence of X. tulumensis-specific xib2 from xib1. Our study is an important cornerstone for future studies to untangle the origin and function of these enigmatic proteins as important components of remipede but also other pancrustacean and arthropod venoms.
期刊介绍:
BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.