Kevin W. Kelley, Omer Revah, Felicity Gore, Konstantin Kaganovsky, Xiaoyu Chen, Karl Deisseroth, Sergiu P. Pașca
{"title":"移植到啮齿动物体内的人类皮质器官组织的宿主回路参与。","authors":"Kevin W. Kelley, Omer Revah, Felicity Gore, Konstantin Kaganovsky, Xiaoyu Chen, Karl Deisseroth, Sergiu P. Pașca","doi":"10.1038/s41596-024-01029-4","DOIUrl":null,"url":null,"abstract":"Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell–derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30–60 days, and the transplantation procedure itself requires ~0.5–1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron–host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages. The transplantation of human cortical organoids in rats enables maturation and integration of human neural cells that can engage with the host circuitry, providing a framework to study alterations in morphology and physiology of patient-derived tissue.","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":"19 12","pages":"3542-3567"},"PeriodicalIF":13.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Host circuit engagement of human cortical organoids transplanted in rodents\",\"authors\":\"Kevin W. Kelley, Omer Revah, Felicity Gore, Konstantin Kaganovsky, Xiaoyu Chen, Karl Deisseroth, Sergiu P. Pașca\",\"doi\":\"10.1038/s41596-024-01029-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell–derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30–60 days, and the transplantation procedure itself requires ~0.5–1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron–host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages. The transplantation of human cortical organoids in rats enables maturation and integration of human neural cells that can engage with the host circuitry, providing a framework to study alterations in morphology and physiology of patient-derived tissue.\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\"19 12\",\"pages\":\"3542-3567\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41596-024-01029-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41596-024-01029-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Host circuit engagement of human cortical organoids transplanted in rodents
Human neural organoids represent promising models for studying neural function; however, organoids grown in vitro lack certain microenvironments and sensory inputs that are thought to be essential for maturation. The transplantation of patient-derived neural organoids into animal hosts helps overcome some of these limitations and offers an approach for neural organoid maturation and circuit integration. Here, we describe a method for transplanting human stem cell–derived cortical organoids (hCOs) into the somatosensory cortex of newborn rats. The differentiation of human induced pluripotent stem cells into hCOs occurs over 30–60 days, and the transplantation procedure itself requires ~0.5–1 hours per animal. The use of neonatal hosts provides a developmentally appropriate stage for circuit integration and allows the generation and experimental manipulation of a unit of human neural tissue within the cortex of a living animal host. After transplantation, animals can be maintained for hundreds of days, and transplanted hCO growth can be monitored by using brain magnetic resonance imaging. We describe the assessment of human neural circuit function in vivo by monitoring genetically encoded calcium responses and extracellular activity. To demonstrate human neuron–host functional integration, we also describe a procedure for engaging host neural circuits and for modulating animal behavior by using an optogenetic behavioral training paradigm. The transplanted human neurons can then undergo ex vivo characterization across modalities including dendritic morphology reconstruction, single-nucleus transcriptomics, optogenetic manipulation and electrophysiology. This approach may enable the discovery of cellular phenotypes from patient-derived cells and uncover mechanisms that contribute to human brain evolution from previously inaccessible developmental stages. The transplantation of human cortical organoids in rats enables maturation and integration of human neural cells that can engage with the host circuitry, providing a framework to study alterations in morphology and physiology of patient-derived tissue.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.