母体施用以线粒体为靶标的 GS-亚硝酸盐 JP4-039 可减轻妊娠中期全身辐照对胎儿的辐射损伤。

IF 2.5 3区 医学 Q2 BIOLOGY Radiation research Pub Date : 2024-09-01 DOI:10.1667/RADE-24-00095.1
Yijen L Wu, Anthony G Christodoulou, Jan H Beumer, Lora H Rigatti, Renee Fisher, Mark Ross, Simon Watkins, Devin R E Cortes, Cody Ruck, Shanim Manzoor, Samuel K Wyman, Margaret C Stapleton, Eric Goetzman, Sivakama Bharathi, Peter Wipf, Hong Wang, Tuantuan Tan, Susan M Christner, Jianxia Guo, Cecilia W Y Lo, Michael W Epperly, Joel S Greenberger
{"title":"母体施用以线粒体为靶标的 GS-亚硝酸盐 JP4-039 可减轻妊娠中期全身辐照对胎儿的辐射损伤。","authors":"Yijen L Wu, Anthony G Christodoulou, Jan H Beumer, Lora H Rigatti, Renee Fisher, Mark Ross, Simon Watkins, Devin R E Cortes, Cody Ruck, Shanim Manzoor, Samuel K Wyman, Margaret C Stapleton, Eric Goetzman, Sivakama Bharathi, Peter Wipf, Hong Wang, Tuantuan Tan, Susan M Christner, Jianxia Guo, Cecilia W Y Lo, Michael W Epperly, Joel S Greenberger","doi":"10.1667/RADE-24-00095.1","DOIUrl":null,"url":null,"abstract":"<p><p>Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal radiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal radiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)-nitroxide radiation mitigator JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total-body irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time-and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed a significant reduction of mitochondrial function in the fetal brain after 3 Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. One day after TBI (E14.5) maternal administration of JP4-039, which passes through the placenta, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. Treatment also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. JP4-039 administration following irradiation resulted in increased survival of pups. These findings indicate that JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation of Fetal Radiation Injury from Mid-Gestation Total-body Irradiation by Maternal Administration of Mitochondrial-Targeted GS-Nitroxide JP4-039.\",\"authors\":\"Yijen L Wu, Anthony G Christodoulou, Jan H Beumer, Lora H Rigatti, Renee Fisher, Mark Ross, Simon Watkins, Devin R E Cortes, Cody Ruck, Shanim Manzoor, Samuel K Wyman, Margaret C Stapleton, Eric Goetzman, Sivakama Bharathi, Peter Wipf, Hong Wang, Tuantuan Tan, Susan M Christner, Jianxia Guo, Cecilia W Y Lo, Michael W Epperly, Joel S Greenberger\",\"doi\":\"10.1667/RADE-24-00095.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal radiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal radiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)-nitroxide radiation mitigator JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total-body irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time-and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed a significant reduction of mitochondrial function in the fetal brain after 3 Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. One day after TBI (E14.5) maternal administration of JP4-039, which passes through the placenta, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. Treatment also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. JP4-039 administration following irradiation resulted in increased survival of pups. These findings indicate that JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-24-00095.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00095.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

辐射恐怖事件的受害者包括孕妇和未出生的胎儿。线粒体功能障碍和氧化应激是胎儿辐射损伤的关键致病因素。这项临床前研究的目的是调查母体服用靶向线粒体的革兰氏染色单体 S(GS)-亚硝基辐射缓解剂 JP4-039 对减轻胎儿辐射损伤的疗效。怀孕的雌性C57BL/6NTac小鼠在妊娠中期胚胎13.5天(E13.5)时接受了3 Gy全身照射(TBI)。通过使用新型时间和运动分辨 4D 宫内磁共振成像(4D-uMRI),我们发现 TBI 对胎儿大脑造成了广泛损伤,包括脑出血、脑组织缺失、脑积水和脑脊液(CSF)过度积聚。胎鼠大脑的组织病理学显示,脑血管破裂,细胞凋亡率升高。进一步使用新型四维氧小波核磁共振成像(4D Oxy-wavelet MRI)探测完整大脑的体内线粒体功能,发现胎鼠大脑在受到 3 Gy TBI 损伤后,线粒体功能显著降低。体内外Oroboros线粒体呼吸测定法验证了这一点。创伤性脑损伤一天后(E14.5),母体服用能通过胎盘的 JP4-039 能显著减少胎儿大脑辐射损伤,改善胎儿大脑线粒体呼吸。治疗还能保持脑组织的完整性,减少脑出血和细胞死亡。辐照后服用JP4-039可提高幼崽的存活率。这些研究结果表明,JP4-039可作为一种安全有效的缓解胎儿在妊娠中期受到宫内电离辐射损伤的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigation of Fetal Radiation Injury from Mid-Gestation Total-body Irradiation by Maternal Administration of Mitochondrial-Targeted GS-Nitroxide JP4-039.

Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal radiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal radiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)-nitroxide radiation mitigator JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total-body irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time-and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed a significant reduction of mitochondrial function in the fetal brain after 3 Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. One day after TBI (E14.5) maternal administration of JP4-039, which passes through the placenta, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. Treatment also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. JP4-039 administration following irradiation resulted in increased survival of pups. These findings indicate that JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
期刊最新文献
Organ-specific Biodosimetry Modeling Using Proteomic Biomarkers of Radiation Exposure. Biomarkers for Radiation Biodosimetry and Correlation with Hematopoietic Injury in a Humanized Mouse Model. Estimating Impacts of p16 Status on Tumor Radiosensitivity in Head and Neck Cancer using Predictive Models. Impact of Cosmic Rays on Radiation Exposures and Scientific Activities at the Atacama Large Millimeter/Submillimeter Array (ALMA) Sites. Mitigating Viral Impact on the Radiation Response of the Lung.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1