开发机器学习模型,预测老年心绞痛患者的 180 天再入院情况。

IF 1.9 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Reviews in cardiovascular medicine Pub Date : 2024-05-31 eCollection Date: 2024-06-01 DOI:10.31083/j.rcm2506203
Yi Luo, Xuewu Song, Rongsheng Tong
{"title":"开发机器学习模型,预测老年心绞痛患者的 180 天再入院情况。","authors":"Yi Luo, Xuewu Song, Rongsheng Tong","doi":"10.31083/j.rcm2506203","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Readmission of elderly angina patients has become a serious problem, with a dearth of available prediction tools for readmission assessment. The objective of this study was to develop a machine learning (ML) model that can predict 180-day all-cause readmission for elderly angina patients.</p><p><strong>Methods: </strong>The clinical data for elderly angina patients was retrospectively collected. Five ML algorithms were used to develop prediction models. Area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), and the Brier score were applied to assess predictive performance. Analysis by Shapley additive explanations (SHAP) was performed to evaluate the contribution of each variable.</p><p><strong>Results: </strong>A total of 1502 elderly angina patients (45.74% female) were enrolled in the study. The extreme gradient boosting (XGB) model showed good predictive performance for 180-day readmission (AUROC = 0.89; AUPRC = 0.91; Brier score = 0.21). SHAP analysis revealed that the number of medications, hematocrit, and chronic obstructive pulmonary disease were important variables associated with 180-day readmission.</p><p><strong>Conclusions: </strong>An ML model can accurately identify elderly angina patients with a high risk of 180-day readmission. The model used to identify individual risk factors can also serve to remind clinicians of appropriate interventions that may help to prevent the readmission of patients.</p>","PeriodicalId":20989,"journal":{"name":"Reviews in cardiovascular medicine","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270066/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developing a Machine Learning Model to Predict 180-day Readmission for Elderly Patients with Angina.\",\"authors\":\"Yi Luo, Xuewu Song, Rongsheng Tong\",\"doi\":\"10.31083/j.rcm2506203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Readmission of elderly angina patients has become a serious problem, with a dearth of available prediction tools for readmission assessment. The objective of this study was to develop a machine learning (ML) model that can predict 180-day all-cause readmission for elderly angina patients.</p><p><strong>Methods: </strong>The clinical data for elderly angina patients was retrospectively collected. Five ML algorithms were used to develop prediction models. Area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), and the Brier score were applied to assess predictive performance. Analysis by Shapley additive explanations (SHAP) was performed to evaluate the contribution of each variable.</p><p><strong>Results: </strong>A total of 1502 elderly angina patients (45.74% female) were enrolled in the study. The extreme gradient boosting (XGB) model showed good predictive performance for 180-day readmission (AUROC = 0.89; AUPRC = 0.91; Brier score = 0.21). SHAP analysis revealed that the number of medications, hematocrit, and chronic obstructive pulmonary disease were important variables associated with 180-day readmission.</p><p><strong>Conclusions: </strong>An ML model can accurately identify elderly angina patients with a high risk of 180-day readmission. The model used to identify individual risk factors can also serve to remind clinicians of appropriate interventions that may help to prevent the readmission of patients.</p>\",\"PeriodicalId\":20989,\"journal\":{\"name\":\"Reviews in cardiovascular medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270066/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in cardiovascular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31083/j.rcm2506203\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in cardiovascular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.rcm2506203","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:老年心绞痛患者再入院已成为一个严重的问题,但目前却缺乏可用于再入院评估的预测工具。本研究的目的是开发一种机器学习(ML)模型,用于预测老年心绞痛患者 180 天内的全因再入院情况:方法:回顾性收集老年心绞痛患者的临床数据。方法:对老年心绞痛患者的临床数据进行回顾性收集,使用五种机器学习算法建立预测模型。应用接收者操作特征曲线下面积(AUROC)、精确召回曲线下面积(AUPRC)和 Brier 评分评估预测性能。采用沙普利加法解释分析法(SHAP)评估每个变量的贡献:共有 1502 名老年心绞痛患者(45.74% 为女性)参与了研究。极梯度提升(XGB)模型对 180 天再入院显示出良好的预测性能(AUROC = 0.89;AUPRC = 0.91;Brier score = 0.21)。SHAP分析显示,药物数量、血细胞比容和慢性阻塞性肺病是与180天再入院相关的重要变量:结论:ML 模型能准确识别 180 天再入院风险较高的老年心绞痛患者。用于识别个体风险因素的模型还能提醒临床医生采取适当的干预措施,从而有助于防止患者再次入院。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing a Machine Learning Model to Predict 180-day Readmission for Elderly Patients with Angina.

Background: Readmission of elderly angina patients has become a serious problem, with a dearth of available prediction tools for readmission assessment. The objective of this study was to develop a machine learning (ML) model that can predict 180-day all-cause readmission for elderly angina patients.

Methods: The clinical data for elderly angina patients was retrospectively collected. Five ML algorithms were used to develop prediction models. Area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), and the Brier score were applied to assess predictive performance. Analysis by Shapley additive explanations (SHAP) was performed to evaluate the contribution of each variable.

Results: A total of 1502 elderly angina patients (45.74% female) were enrolled in the study. The extreme gradient boosting (XGB) model showed good predictive performance for 180-day readmission (AUROC = 0.89; AUPRC = 0.91; Brier score = 0.21). SHAP analysis revealed that the number of medications, hematocrit, and chronic obstructive pulmonary disease were important variables associated with 180-day readmission.

Conclusions: An ML model can accurately identify elderly angina patients with a high risk of 180-day readmission. The model used to identify individual risk factors can also serve to remind clinicians of appropriate interventions that may help to prevent the readmission of patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in cardiovascular medicine
Reviews in cardiovascular medicine 医学-心血管系统
CiteScore
2.70
自引率
3.70%
发文量
377
审稿时长
1 months
期刊介绍: RCM is an international, peer-reviewed, open access journal. RCM publishes research articles, review papers and short communications on cardiovascular medicine as well as research on cardiovascular disease. We aim to provide a forum for publishing papers which explore the pathogenesis and promote the progression of cardiac and vascular diseases. We also seek to establish an interdisciplinary platform, focusing on translational issues, to facilitate the advancement of research, clinical treatment and diagnostic procedures. Heart surgery, cardiovascular imaging, risk factors and various clinical cardiac & vascular research will be considered.
期刊最新文献
The Vectorcardiogram Characteristic and Its Predictive Value for Reduced Left Ventricular Ejection Fraction of Children with Duchenne Muscular Dystrophy. Outcome of Transcatheter Aortic Valve Replacement for Pure Native Aortic Regurgitation in Patients with Pulmonary Hypertension. Advantages of using Genetically Elevated Lipoprotein(a) Levels in Predicting 5-Year Major Adverse Cardiovascular Events Relating to Coronary Artery Disease in Women. Bicuspid Aortic Valve, from the Unknown till the Perfection of the Species. Atrial High-Rate Episodes and Subclinical Atrial Fibrillation: State of the Art and Clinical Questions with Complex Solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1