开发一种深度学习模型,用于检测非梗阻性无精子症患者精子复苏过程中的阳性小管。

IF 3.7 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY Reproduction Pub Date : 2024-08-27 Print Date: 2024-10-01 DOI:10.1530/REP-24-0181
Teppei Takeshima, Jurii Karibe, Shinnosuke Kuroda, Yasushi Yumura
{"title":"开发一种深度学习模型,用于检测非梗阻性无精子症患者精子复苏过程中的阳性小管。","authors":"Teppei Takeshima, Jurii Karibe, Shinnosuke Kuroda, Yasushi Yumura","doi":"10.1530/REP-24-0181","DOIUrl":null,"url":null,"abstract":"<p><p>To enhance surgical testicular sperm retrieval outcome for men with nonobstructive azoospermia, a deep-learning model was developed to identify positive seminiferous tubules by labeling 110 images with sperm-containing tubules sampled during microdissection testicular sperm extraction as training and validation data. After training, the model achieved an average precision of 0.60.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a deep-learning model for detecting positive tubules during sperm recovery for nonobstructive azoospermia.\",\"authors\":\"Teppei Takeshima, Jurii Karibe, Shinnosuke Kuroda, Yasushi Yumura\",\"doi\":\"10.1530/REP-24-0181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To enhance surgical testicular sperm retrieval outcome for men with nonobstructive azoospermia, a deep-learning model was developed to identify positive seminiferous tubules by labeling 110 images with sperm-containing tubules sampled during microdissection testicular sperm extraction as training and validation data. After training, the model achieved an average precision of 0.60.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-24-0181\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0181","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了提高非梗阻性无精子症男性的睾丸取精手术效果,研究人员开发了一种深度学习模型,通过标记110张显微解剖睾丸取精过程中采样的含精小管图像作为训练和验证数据,来识别阳性精小管。经过训练后,该模型的平均精确度达到了 0.60。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a deep-learning model for detecting positive tubules during sperm recovery for nonobstructive azoospermia.

To enhance surgical testicular sperm retrieval outcome for men with nonobstructive azoospermia, a deep-learning model was developed to identify positive seminiferous tubules by labeling 110 images with sperm-containing tubules sampled during microdissection testicular sperm extraction as training and validation data. After training, the model achieved an average precision of 0.60.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reproduction
Reproduction 生物-发育生物学
CiteScore
7.40
自引率
2.60%
发文量
199
审稿时长
4-8 weeks
期刊介绍: Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction. Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease. Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.
期刊最新文献
IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: A contemporary review of machine learning to predict adverse pregnancy outcomes from pharmaceuticals, including DDIs. O-GlcNAc participates in the meiosis of aging oocytes by mediating mitochondrial function. REPRODUCTIVE HEALTH IN TRANS AND GENDER-DIVERSE PATIENTS: Trauma-informed reproductive care for transgender and nonbinary people. SON controls mouse early embryonic development by regulating RNA splicing and histone methylation. IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: Systemic and ovarian impacts of heat stress in the porcine model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1