三维培养的人脐带间充质干细胞通过改善线粒体融合与分裂的平衡来减轻肺纤维化。

IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cells Translational Medicine Pub Date : 2024-09-10 DOI:10.1093/stcltm/szae051
Huifang Zhai, Mengqi Jiang, Yaqin Zhao, Yujie Wang, Haitong Zhang, Yunxia Ji, Xiaodong Song, Jinjin Zhang, Changjun Lv, Minge Li
{"title":"三维培养的人脐带间充质干细胞通过改善线粒体融合与分裂的平衡来减轻肺纤维化。","authors":"Huifang Zhai, Mengqi Jiang, Yaqin Zhao, Yujie Wang, Haitong Zhang, Yunxia Ji, Xiaodong Song, Jinjin Zhang, Changjun Lv, Minge Li","doi":"10.1093/stcltm/szae051","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary fibrosis is a kind of fibrotic interstitial pneumonia with poor prognosis. Aging, environmental pollution, and coronavirus disease 2019 are considered as independent risk factors for pulmonary fibrogenesis. Consequently, the morbidity and mortality striking continues to rise in recent years. However, the clinical therapeutic efficacy is very limited and unsatisfactory. So it is necessary to develop a new effective therapeutic approach for pulmonary fibrosis. Human umbilical cord mesenchymal stem cells (hucMSCs) are considered as a promising treatment for various diseases because of their multiple differentiation and immunomodulatory function. The key bottleneck in the clinical application of hucMSCs therapy is the high-quality and large-scale production. This study used FloTrix miniSpin bioreactor, a three-dimensional (3D) cell culture system, for large-scale expansion of hucMSCs in vitro, and proved 3D cultured hucMSCs inhibited the differentiation of fibroblasts into myofibroblasts and myofibroblasts proliferation and migration, leading to slow down the development of pulmonary fibrosis. Further mechanistic studies clarified that hucMSCs reduced the amount of binding between circELP2 and miR-630, resulting in blocking YAP/TAZ translocation from cytoplasm to nucleus. This condition inhibited mitochondrial fusion and promoted mitochondrial fission, and ultimately improved fusion/fission balance and cellular homeostasis. To sum up, this work clarified the anti-fibrosis and mechanism of hucMSCs cultured from the 3D FloTrix miniSpin bioreactor. We hope to provide new ideas and new methods for the clinical transformation and industrialization of hucMSCs therapy.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"912-926"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386227/pdf/","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional cultured human umbilical cord mesenchymal stem cells attenuate pulmonary fibrosis by improving the balance of mitochondrial fusion and fission.\",\"authors\":\"Huifang Zhai, Mengqi Jiang, Yaqin Zhao, Yujie Wang, Haitong Zhang, Yunxia Ji, Xiaodong Song, Jinjin Zhang, Changjun Lv, Minge Li\",\"doi\":\"10.1093/stcltm/szae051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pulmonary fibrosis is a kind of fibrotic interstitial pneumonia with poor prognosis. Aging, environmental pollution, and coronavirus disease 2019 are considered as independent risk factors for pulmonary fibrogenesis. Consequently, the morbidity and mortality striking continues to rise in recent years. However, the clinical therapeutic efficacy is very limited and unsatisfactory. So it is necessary to develop a new effective therapeutic approach for pulmonary fibrosis. Human umbilical cord mesenchymal stem cells (hucMSCs) are considered as a promising treatment for various diseases because of their multiple differentiation and immunomodulatory function. The key bottleneck in the clinical application of hucMSCs therapy is the high-quality and large-scale production. This study used FloTrix miniSpin bioreactor, a three-dimensional (3D) cell culture system, for large-scale expansion of hucMSCs in vitro, and proved 3D cultured hucMSCs inhibited the differentiation of fibroblasts into myofibroblasts and myofibroblasts proliferation and migration, leading to slow down the development of pulmonary fibrosis. Further mechanistic studies clarified that hucMSCs reduced the amount of binding between circELP2 and miR-630, resulting in blocking YAP/TAZ translocation from cytoplasm to nucleus. This condition inhibited mitochondrial fusion and promoted mitochondrial fission, and ultimately improved fusion/fission balance and cellular homeostasis. To sum up, this work clarified the anti-fibrosis and mechanism of hucMSCs cultured from the 3D FloTrix miniSpin bioreactor. We hope to provide new ideas and new methods for the clinical transformation and industrialization of hucMSCs therapy.</p>\",\"PeriodicalId\":21986,\"journal\":{\"name\":\"Stem Cells Translational Medicine\",\"volume\":\" \",\"pages\":\"912-926\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stcltm/szae051\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae051","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

肺纤维化是一种预后不良的纤维化间质性肺炎。老龄化、环境污染和冠状病毒疾病 2019 年被认为是肺纤维化发生的独立危险因素。因此,近年来发病率和死亡率持续上升。然而,临床治疗效果非常有限,且不尽如人意。因此,有必要开发一种新的有效治疗肺纤维化的方法。人脐带间充质干细胞(hucMSCs)具有多种分化和免疫调节功能,被认为是治疗多种疾病的一种有前景的方法。高质量和大规模生产是人脐带间充质干细胞临床应用的关键瓶颈。本研究利用三维(3D)细胞培养系统FloTrix miniSpin生物反应器在体外大规模扩增hucMSCs,证明3D培养的hucMSCs能抑制成纤维细胞向肌成纤维细胞的分化以及肌成纤维细胞的增殖和迁移,从而减缓肺纤维化的发展。进一步的机理研究表明,hucMSCs减少了circELP2与miR-630之间的结合量,从而阻断了YAP/TAZ从细胞质到细胞核的转位。这种情况抑制了线粒体融合,促进了线粒体裂变,最终改善了融合/裂变平衡和细胞稳态。总之,这项工作阐明了三维 FloTrix miniSpin 生物反应器培养的 hucMSCs 的抗纤维化作用和机制。希望能为 hucMSCs 治疗的临床转化和产业化提供新思路和新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-dimensional cultured human umbilical cord mesenchymal stem cells attenuate pulmonary fibrosis by improving the balance of mitochondrial fusion and fission.

Pulmonary fibrosis is a kind of fibrotic interstitial pneumonia with poor prognosis. Aging, environmental pollution, and coronavirus disease 2019 are considered as independent risk factors for pulmonary fibrogenesis. Consequently, the morbidity and mortality striking continues to rise in recent years. However, the clinical therapeutic efficacy is very limited and unsatisfactory. So it is necessary to develop a new effective therapeutic approach for pulmonary fibrosis. Human umbilical cord mesenchymal stem cells (hucMSCs) are considered as a promising treatment for various diseases because of their multiple differentiation and immunomodulatory function. The key bottleneck in the clinical application of hucMSCs therapy is the high-quality and large-scale production. This study used FloTrix miniSpin bioreactor, a three-dimensional (3D) cell culture system, for large-scale expansion of hucMSCs in vitro, and proved 3D cultured hucMSCs inhibited the differentiation of fibroblasts into myofibroblasts and myofibroblasts proliferation and migration, leading to slow down the development of pulmonary fibrosis. Further mechanistic studies clarified that hucMSCs reduced the amount of binding between circELP2 and miR-630, resulting in blocking YAP/TAZ translocation from cytoplasm to nucleus. This condition inhibited mitochondrial fusion and promoted mitochondrial fission, and ultimately improved fusion/fission balance and cellular homeostasis. To sum up, this work clarified the anti-fibrosis and mechanism of hucMSCs cultured from the 3D FloTrix miniSpin bioreactor. We hope to provide new ideas and new methods for the clinical transformation and industrialization of hucMSCs therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cells Translational Medicine
Stem Cells Translational Medicine CELL & TISSUE ENGINEERING-
CiteScore
12.90
自引率
3.30%
发文量
140
审稿时长
6-12 weeks
期刊介绍: STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal. STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes. The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.
期刊最新文献
Tailoring cell therapies for diabetic metabolic phenotypes: a comparative study on the efficacy of various umbilical cord-derived cell regimens. Human umbilical cord mesenchymal stem cells small extracellular vesicles-derived miR-370-3p inhibits cervical precancerous lesions by targeting DHCR24. Exploring mesenchymal stem cells homing mechanisms and improvement strategies. Progranulin enhances the engraftment of transplanted human iPS cell-derived cerebral neurons. eIF6 modulates skin wound healing by upregulating keratin 6B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1