用异源诱导多能干细胞模拟脉络膜血症。

Stem cells and development Pub Date : 2024-10-01 Epub Date: 2024-08-16 DOI:10.1089/scd.2024.0105
Ana Fragoso Fonseca, Rita Coelho, Mafalda Lopes- da-Silva, Luísa Lemos, Michael J Hall, Daniela Oliveira, Ana Sofia Falcão, Sandra Tenreiro, Miguel C Seabra, Pedro Antas
{"title":"用异源诱导多能干细胞模拟脉络膜血症。","authors":"Ana Fragoso Fonseca, Rita Coelho, Mafalda Lopes- da-Silva, Luísa Lemos, Michael J Hall, Daniela Oliveira, Ana Sofia Falcão, Sandra Tenreiro, Miguel C Seabra, Pedro Antas","doi":"10.1089/scd.2024.0105","DOIUrl":null,"url":null,"abstract":"<p><p>Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy causing progressive vision loss due to mutations in the <i>CHM</i> gene, leading to Rab escort protein 1 loss of function. CHM disease is characterized by a progressive degeneration of the choroid, the retinal pigment epithelium (RPE), and the retina. The RPE is a monolayer of polarized cells that supports photoreceptors, providing nutrients, growth factors, and ions, and removes retinal metabolism waste products, having a central role in CHM pathogenesis. Commonly used models such as ARPE-19 cells do not reproduce accurately the nature of RPE cells. Human induced pluripotent stem cells (hiPSCs) can be differentiated into RPE cells (hiPSC-RPE), which mimic key features of native RPE, being more suited to study retinal diseases. Therefore, we took advantage of hiPSCs to generate new human-based CHM models. Two isogenic hiPSC lines were generated through CRISPR/Cas9: a CHM knock-out line from a healthy donor and a corrected CHM patient line using a knock-in approach. The differentiated hiPSC-RPE lines exhibited critical morphological and physiological characteristics of native RPE, including the presence of the tight junction markers Claudin-19 and Zonula Occludens-1, phagocytosis of photoreceptor outer segments, pigmentation, a postmitotic state, and the characteristic polygonal shape. In addition, all the studied cells were able to form retinal organoids. This work resulted in the establishment of isogenic hiPSC lines, representing a new and important CHM cellular model. To our knowledge, this is the first time that isogenic cell lines have been developed to model CHM disease, providing a valuable tool for studying the mechanisms at the onset of RPE degeneration.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Choroideremia Disease with Isogenic Induced Pluripotent Stem Cells.\",\"authors\":\"Ana Fragoso Fonseca, Rita Coelho, Mafalda Lopes- da-Silva, Luísa Lemos, Michael J Hall, Daniela Oliveira, Ana Sofia Falcão, Sandra Tenreiro, Miguel C Seabra, Pedro Antas\",\"doi\":\"10.1089/scd.2024.0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy causing progressive vision loss due to mutations in the <i>CHM</i> gene, leading to Rab escort protein 1 loss of function. CHM disease is characterized by a progressive degeneration of the choroid, the retinal pigment epithelium (RPE), and the retina. The RPE is a monolayer of polarized cells that supports photoreceptors, providing nutrients, growth factors, and ions, and removes retinal metabolism waste products, having a central role in CHM pathogenesis. Commonly used models such as ARPE-19 cells do not reproduce accurately the nature of RPE cells. Human induced pluripotent stem cells (hiPSCs) can be differentiated into RPE cells (hiPSC-RPE), which mimic key features of native RPE, being more suited to study retinal diseases. Therefore, we took advantage of hiPSCs to generate new human-based CHM models. Two isogenic hiPSC lines were generated through CRISPR/Cas9: a CHM knock-out line from a healthy donor and a corrected CHM patient line using a knock-in approach. The differentiated hiPSC-RPE lines exhibited critical morphological and physiological characteristics of native RPE, including the presence of the tight junction markers Claudin-19 and Zonula Occludens-1, phagocytosis of photoreceptor outer segments, pigmentation, a postmitotic state, and the characteristic polygonal shape. In addition, all the studied cells were able to form retinal organoids. This work resulted in the establishment of isogenic hiPSC lines, representing a new and important CHM cellular model. To our knowledge, this is the first time that isogenic cell lines have been developed to model CHM disease, providing a valuable tool for studying the mechanisms at the onset of RPE degeneration.</p>\",\"PeriodicalId\":94214,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2024.0105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2024.0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脉络膜视网膜营养不良症(Choroideremia,CHM)是一种罕见的 X 连锁脉络膜视网膜营养不良症,由于 CHM 基因突变导致 Rab 护送蛋白 1(REP1)功能丧失,从而引起进行性视力丧失。CHM 病的特征是脉络膜、视网膜色素上皮(RPE)和视网膜的进行性变性。视网膜色素上皮(RPE)是单层的极化细胞,它支持光感受器,提供营养、生长因子和离子,并清除视网膜代谢废物,在CHM发病机制中起着核心作用。常用的模型(如 ARPE-19 细胞)不能准确再现 RPE 细胞的性质。人类诱导多能干细胞(hiPSC)可分化为 RPE 细胞(hiPSC-RPE),模拟原生 RPE 的主要特征,更适合研究视网膜疾病。因此,我们利用 hiPSC 的优势,建立了新的基于人类的 CHM 模型。我们通过 CRISPR/Cas9 生成了两个同源的 hiPSC 株系:一个是来自健康供体的 CHM 基因敲除株系,另一个是采用基因敲入方法的 CHM 患者矫正株系。分化后的 hiPSC-RPE 株系表现出原生 RPE 的关键形态学和生理学特征,包括存在紧密连接标记 Claudin-19 和 Zonula Occludens-1、吞噬感光体外节段、色素沉着、后有丝分裂状态以及特征性的多边形形状。此外,所有研究细胞都能形成视网膜器官组织。这项工作的结果是建立了同源的 hiPSC 株系,代表了一种新的、重要的 CHM 细胞模型。据我们所知,这是首次开发出用于模拟 CHM 疾病的同源细胞系,为研究 RPE 退化的发病机制提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Choroideremia Disease with Isogenic Induced Pluripotent Stem Cells.

Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy causing progressive vision loss due to mutations in the CHM gene, leading to Rab escort protein 1 loss of function. CHM disease is characterized by a progressive degeneration of the choroid, the retinal pigment epithelium (RPE), and the retina. The RPE is a monolayer of polarized cells that supports photoreceptors, providing nutrients, growth factors, and ions, and removes retinal metabolism waste products, having a central role in CHM pathogenesis. Commonly used models such as ARPE-19 cells do not reproduce accurately the nature of RPE cells. Human induced pluripotent stem cells (hiPSCs) can be differentiated into RPE cells (hiPSC-RPE), which mimic key features of native RPE, being more suited to study retinal diseases. Therefore, we took advantage of hiPSCs to generate new human-based CHM models. Two isogenic hiPSC lines were generated through CRISPR/Cas9: a CHM knock-out line from a healthy donor and a corrected CHM patient line using a knock-in approach. The differentiated hiPSC-RPE lines exhibited critical morphological and physiological characteristics of native RPE, including the presence of the tight junction markers Claudin-19 and Zonula Occludens-1, phagocytosis of photoreceptor outer segments, pigmentation, a postmitotic state, and the characteristic polygonal shape. In addition, all the studied cells were able to form retinal organoids. This work resulted in the establishment of isogenic hiPSC lines, representing a new and important CHM cellular model. To our knowledge, this is the first time that isogenic cell lines have been developed to model CHM disease, providing a valuable tool for studying the mechanisms at the onset of RPE degeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancements in Organoid Culture Technologies: Current Trends and Innovations. Establishment of Periodontal Ligament Stem Cell-like Cells Derived from Feeder-Free Cultured Induced Pluripotent Stem Cells. Safety and Potential Efficacy of Expanded Umbilical Cord-Derived Mesenchymal Stromal Cells in Luminal Ulcerative Colitis Patients. Development of Mesenchymal Stem Cell Encoded with Myogenic Gene for Treating Radiation-Induced Muscle Fibrosis. Dtx2 Deficiency Induces Ependymo-Radial Glial Cell Proliferation and Improves Spinal Cord Motor Function Recovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1