革新神经疗法:纳米载体揭示植物化学物质在阿尔茨海默病中的潜力

IF 4.6 2区 医学 Q1 NEUROSCIENCES Neuropharmacology Pub Date : 2024-07-29 DOI:10.1016/j.neuropharm.2024.110096
Akshatha P. Kamath , Pawan Ganesh Nayak , Jeena John , Srinivas Mutalik , Ashok Kumar Balaraman , Nandakumar Krishnadas
{"title":"革新神经疗法:纳米载体揭示植物化学物质在阿尔茨海默病中的潜力","authors":"Akshatha P. Kamath ,&nbsp;Pawan Ganesh Nayak ,&nbsp;Jeena John ,&nbsp;Srinivas Mutalik ,&nbsp;Ashok Kumar Balaraman ,&nbsp;Nandakumar Krishnadas","doi":"10.1016/j.neuropharm.2024.110096","DOIUrl":null,"url":null,"abstract":"<div><p>Neurological disorders pose a huge worldwide challenge to the healthcare system, necessitating innovative strategies for targeted drug delivery to the central nervous system. Alzheimer's disease (AD) is an untreatable neurodegenerative condition characterized by dementia and alterations in a patient's physiological and mental states. Since ancient times, medicinal plants have been an important source of bioactive phytochemicals with immense therapeutic potential. This review investigates new and safer alternatives for prevention and treatment of disease related to inevitable side effects associated with synthetic compounds. This review examines how nanotechnology can help in enhancing the delivery of neuroprotective phytochemicals in AD. Nevertheless, despite their remarkable neuroprotective properties, these natural products often have poor therapeutic efficacy due to low bioavailability, limited solubility and imperfect blood brain barrier (BBB) penetration. Nanotechnology produces personalized drug delivery systems which are necessary for solving such problems. In overcoming these challenges, nanotechnology might be employed as a way forward whereby customized medication delivery systems would be established as a result. The use of nanocarriers in the design and application of important phytochemicals is highlighted by this review, which indicate potential for revolutionizing neuroprotective drug delivery. We also explore the complications and possibilities of using nanocarriers to supply nutraceuticals and improve patients' standard of living, and preclinical as well as clinical investigations displaying that these techniques are effective in mitigating neurodegenerative diseases. In order to fight brain diseases and improve patient's health, scientists and doctors can employ nanotechnology with its possible therapeutic interventions.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"259 ","pages":"Article 110096"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002839082400265X/pdfft?md5=b481825937c5f34755145dc4c482c9ce&pid=1-s2.0-S002839082400265X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing neurotherapeutics: Nanocarriers unveiling the potential of phytochemicals in Alzheimer's disease\",\"authors\":\"Akshatha P. Kamath ,&nbsp;Pawan Ganesh Nayak ,&nbsp;Jeena John ,&nbsp;Srinivas Mutalik ,&nbsp;Ashok Kumar Balaraman ,&nbsp;Nandakumar Krishnadas\",\"doi\":\"10.1016/j.neuropharm.2024.110096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neurological disorders pose a huge worldwide challenge to the healthcare system, necessitating innovative strategies for targeted drug delivery to the central nervous system. Alzheimer's disease (AD) is an untreatable neurodegenerative condition characterized by dementia and alterations in a patient's physiological and mental states. Since ancient times, medicinal plants have been an important source of bioactive phytochemicals with immense therapeutic potential. This review investigates new and safer alternatives for prevention and treatment of disease related to inevitable side effects associated with synthetic compounds. This review examines how nanotechnology can help in enhancing the delivery of neuroprotective phytochemicals in AD. Nevertheless, despite their remarkable neuroprotective properties, these natural products often have poor therapeutic efficacy due to low bioavailability, limited solubility and imperfect blood brain barrier (BBB) penetration. Nanotechnology produces personalized drug delivery systems which are necessary for solving such problems. In overcoming these challenges, nanotechnology might be employed as a way forward whereby customized medication delivery systems would be established as a result. The use of nanocarriers in the design and application of important phytochemicals is highlighted by this review, which indicate potential for revolutionizing neuroprotective drug delivery. We also explore the complications and possibilities of using nanocarriers to supply nutraceuticals and improve patients' standard of living, and preclinical as well as clinical investigations displaying that these techniques are effective in mitigating neurodegenerative diseases. In order to fight brain diseases and improve patient's health, scientists and doctors can employ nanotechnology with its possible therapeutic interventions.</p></div>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"259 \",\"pages\":\"Article 110096\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S002839082400265X/pdfft?md5=b481825937c5f34755145dc4c482c9ce&pid=1-s2.0-S002839082400265X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002839082400265X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002839082400265X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经系统疾病给医疗保健系统带来了巨大的全球性挑战,因此有必要采取创新战略,为中枢神经系统提供靶向药物。阿尔茨海默病(AD)是一种无法治疗的神经退行性疾病,其特征是痴呆以及患者生理和精神状态的改变。自古以来,药用植物一直是具有巨大治疗潜力的生物活性植物化学物质的重要来源。由于合成化合物不可避免地会产生副作用,本综述将研究更安全的新型替代品,以预防和治疗相关疾病。本综述探讨了纳米技术如何帮助提高植物化学物质在 AD 中的神经保护作用。然而,尽管这些天然产品具有显著的神经保护特性,但由于生物利用度低、溶解度有限以及血脑屏障(BBB)穿透不完善,其疗效往往不佳。纳米技术产生的个性化给药系统是解决这些问题所必需的。在克服这些挑战时,纳米技术可能被用作一种前进的方式,从而建立个性化的给药系统。本综述重点介绍了纳米载体在重要植物化学物质的设计和应用中的应用,这表明纳米载体具有彻底改变神经保护给药方式的潜力。我们还探讨了利用纳米载体提供营养保健品和提高患者生活水平的复杂性和可能性,临床前和临床研究表明,这些技术可有效缓解神经退行性疾病。为了防治脑部疾病和改善患者健康,科学家和医生可以利用纳米技术及其可能的治疗干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revolutionizing neurotherapeutics: Nanocarriers unveiling the potential of phytochemicals in Alzheimer's disease

Neurological disorders pose a huge worldwide challenge to the healthcare system, necessitating innovative strategies for targeted drug delivery to the central nervous system. Alzheimer's disease (AD) is an untreatable neurodegenerative condition characterized by dementia and alterations in a patient's physiological and mental states. Since ancient times, medicinal plants have been an important source of bioactive phytochemicals with immense therapeutic potential. This review investigates new and safer alternatives for prevention and treatment of disease related to inevitable side effects associated with synthetic compounds. This review examines how nanotechnology can help in enhancing the delivery of neuroprotective phytochemicals in AD. Nevertheless, despite their remarkable neuroprotective properties, these natural products often have poor therapeutic efficacy due to low bioavailability, limited solubility and imperfect blood brain barrier (BBB) penetration. Nanotechnology produces personalized drug delivery systems which are necessary for solving such problems. In overcoming these challenges, nanotechnology might be employed as a way forward whereby customized medication delivery systems would be established as a result. The use of nanocarriers in the design and application of important phytochemicals is highlighted by this review, which indicate potential for revolutionizing neuroprotective drug delivery. We also explore the complications and possibilities of using nanocarriers to supply nutraceuticals and improve patients' standard of living, and preclinical as well as clinical investigations displaying that these techniques are effective in mitigating neurodegenerative diseases. In order to fight brain diseases and improve patient's health, scientists and doctors can employ nanotechnology with its possible therapeutic interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropharmacology
Neuropharmacology 医学-神经科学
CiteScore
10.00
自引率
4.30%
发文量
288
审稿时长
45 days
期刊介绍: Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).
期刊最新文献
Editorial Board Immunomodulatory effect of lithium treatment on in vitro model of neuroinflammation. Neural Modulation by Nicotine Aerosols and the Role of Flavor Additives: Insights from Local Field Potentials in Mice. Sex differences in the antinociceptive effect of codeine and its peripheral but not central metabolism in adult mice Functional evidence that S-nitroso-L-cysteine may be a candidate carotid body neurotransmitter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1