多尺度实验和预测建模用于网格增材制造中的故障缓解

M. Utzeri, Marco Sasso, Vikram S. Deshpande, Shanmugam Kumar
{"title":"多尺度实验和预测建模用于网格增材制造中的故障缓解","authors":"M. Utzeri, Marco Sasso, Vikram S. Deshpande, Shanmugam Kumar","doi":"10.1002/admt.202400457","DOIUrl":null,"url":null,"abstract":"Additive Manufacturing (AM) empowers the creation of high‐performance cellular materials, underscoring the increasing need for programmable and predictable energy absorption capabilities. This study evaluates the impact of a precisely tuned fused filament fabrication (FFF) process on the energy absorption and failure characteristics of 2D‐thermoplastic lattice materials through multiscale experiments and predictive modeling. Macroscale in‐plane compression testing of both thick‐ and thin‐walled lattices, along with their µ‐CT imaging, reveal relative density‐dependent damage mechanisms and failure modes, prompting the development of a robust predictive modeling framework to capture process‐induced performance variation and damage. For lower relative density lattices, an FE model based on the extended Drucker–Prager material model, incorporating Bridgman's correction with crazing failure criteria, accurately captures the crushing response. As lattice density increases, interfacial damage along bead‐bead interfaces becomes predominant, necessitating the enrichment of the model with a microscale cohesive zone model to capture interfacial debonding. The predictive modeling introduces an enhancement factor, offering a straightforward method to assess the impact of the AM process on energy absorption performance, thereby facilitating the inverse design of FFF‐printed lattices. This approach provides a critical evaluation of how FFF processes can be optimized to achieve the highest attainable performance and mitigate failures in architected materials.","PeriodicalId":504693,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Experiments and Predictive Modeling for Failure Mitigation in Additive Manufacturing of Lattices\",\"authors\":\"M. Utzeri, Marco Sasso, Vikram S. Deshpande, Shanmugam Kumar\",\"doi\":\"10.1002/admt.202400457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive Manufacturing (AM) empowers the creation of high‐performance cellular materials, underscoring the increasing need for programmable and predictable energy absorption capabilities. This study evaluates the impact of a precisely tuned fused filament fabrication (FFF) process on the energy absorption and failure characteristics of 2D‐thermoplastic lattice materials through multiscale experiments and predictive modeling. Macroscale in‐plane compression testing of both thick‐ and thin‐walled lattices, along with their µ‐CT imaging, reveal relative density‐dependent damage mechanisms and failure modes, prompting the development of a robust predictive modeling framework to capture process‐induced performance variation and damage. For lower relative density lattices, an FE model based on the extended Drucker–Prager material model, incorporating Bridgman's correction with crazing failure criteria, accurately captures the crushing response. As lattice density increases, interfacial damage along bead‐bead interfaces becomes predominant, necessitating the enrichment of the model with a microscale cohesive zone model to capture interfacial debonding. The predictive modeling introduces an enhancement factor, offering a straightforward method to assess the impact of the AM process on energy absorption performance, thereby facilitating the inverse design of FFF‐printed lattices. This approach provides a critical evaluation of how FFF processes can be optimized to achieve the highest attainable performance and mitigate failures in architected materials.\",\"PeriodicalId\":504693,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202400457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

增材制造(AM)技术有助于制造高性能的蜂窝材料,强调了对可编程和可预测能量吸收能力的日益增长的需求。本研究通过多尺度实验和预测建模,评估了精确调整的熔融长丝制造(FFF)工艺对二维热塑晶格材料的能量吸收和失效特性的影响。厚壁和薄壁晶格的宏观面内压缩测试及其 µ-CT 成像揭示了与相对密度相关的损坏机制和失效模式,从而促使开发出一种稳健的预测建模框架,以捕捉工艺引起的性能变化和损坏。对于相对密度较低的晶格,基于扩展德鲁克-普拉格材料模型的有限元模型结合布里奇曼校正和裂纹失效标准,可以准确捕捉破碎响应。随着晶格密度的增加,珠粒-珠粒界面上的界面破坏成为主要现象,因此有必要使用微尺度内聚区模型来丰富模型,以捕捉界面脱粘现象。预测模型引入了一个增强因子,提供了一种直接的方法来评估 AM 工艺对能量吸收性能的影响,从而促进了 FFF 印刷晶格的逆向设计。这种方法对如何优化 FFF 工艺以实现最高性能和减少架构材料的失效进行了重要评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale Experiments and Predictive Modeling for Failure Mitigation in Additive Manufacturing of Lattices
Additive Manufacturing (AM) empowers the creation of high‐performance cellular materials, underscoring the increasing need for programmable and predictable energy absorption capabilities. This study evaluates the impact of a precisely tuned fused filament fabrication (FFF) process on the energy absorption and failure characteristics of 2D‐thermoplastic lattice materials through multiscale experiments and predictive modeling. Macroscale in‐plane compression testing of both thick‐ and thin‐walled lattices, along with their µ‐CT imaging, reveal relative density‐dependent damage mechanisms and failure modes, prompting the development of a robust predictive modeling framework to capture process‐induced performance variation and damage. For lower relative density lattices, an FE model based on the extended Drucker–Prager material model, incorporating Bridgman's correction with crazing failure criteria, accurately captures the crushing response. As lattice density increases, interfacial damage along bead‐bead interfaces becomes predominant, necessitating the enrichment of the model with a microscale cohesive zone model to capture interfacial debonding. The predictive modeling introduces an enhancement factor, offering a straightforward method to assess the impact of the AM process on energy absorption performance, thereby facilitating the inverse design of FFF‐printed lattices. This approach provides a critical evaluation of how FFF processes can be optimized to achieve the highest attainable performance and mitigate failures in architected materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Crosslinking Degree on Chitosan and Oxidized Guar Gum‐Based Injectable Hydrogels for Biomedical Applications Electrically Switchable Transmissive and Reflective Liquid Crystal Polarization Gratings Based on Cholesteric Liquid Crystals Low‐Temperature Poly‐Si Thin‐Film Transistor with High‐k ZrAlOx Gate Insulator with SiO2 Blocking Layer Chemical Vapor Deposition Growth of Vertical Graphene/WSe2 Heterostructures with Interlayer Twists Colloidal Semiconductor Quantum Well Supraparticles as Low‐Threshold and Photostable Microlasers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1