M. A. Zarudskikh, E. G. Ilina, A. S. Mankevich, V. P. Smagin
{"title":"基于十二烷的均相体系中硫化锌的合成和合金化及其鉴定和光学特性","authors":"M. A. Zarudskikh, E. G. Ilina, A. S. Mankevich, V. P. Smagin","doi":"10.31857/s0044457x24020038","DOIUrl":null,"url":null,"abstract":"Zinc sulfide doped with Mn2+ ions was synthesized in a homogeneous dodecane medium by the method of emerging reagents. By methods of chemical and X-ray phase analysis, IR spectroscopy, electron microprobe microscopy, identification of products was carried out, photographs of the surface of powder particles (SEM) were recorded. Based on the totality of the results, a conclusion is made about the formation of nanoscale objects having a polytype structure with a predominance of distorted cubic crystals forming agglomerates up to 10 microns in size in ZnS powder and up to 100 microns in ZnS–Mn powder. The formation of nanoscale ZnS particles is confirmed by spectral data. The effect of manganese ions on the photoluminescence (FL) of the powder is manifested by a change in the type of the descending branch of the ZnS–Mn FL band, it is associated with recombination processes at the levels of defects formed by Mn2+ ions in the ZnS structure at their low concentration.","PeriodicalId":360124,"journal":{"name":"Журнал неорганической химии","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and alloying of zinc sulfide in a homogeneous system based on dodecane, its identification and optical properties\",\"authors\":\"M. A. Zarudskikh, E. G. Ilina, A. S. Mankevich, V. P. Smagin\",\"doi\":\"10.31857/s0044457x24020038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc sulfide doped with Mn2+ ions was synthesized in a homogeneous dodecane medium by the method of emerging reagents. By methods of chemical and X-ray phase analysis, IR spectroscopy, electron microprobe microscopy, identification of products was carried out, photographs of the surface of powder particles (SEM) were recorded. Based on the totality of the results, a conclusion is made about the formation of nanoscale objects having a polytype structure with a predominance of distorted cubic crystals forming agglomerates up to 10 microns in size in ZnS powder and up to 100 microns in ZnS–Mn powder. The formation of nanoscale ZnS particles is confirmed by spectral data. The effect of manganese ions on the photoluminescence (FL) of the powder is manifested by a change in the type of the descending branch of the ZnS–Mn FL band, it is associated with recombination processes at the levels of defects formed by Mn2+ ions in the ZnS structure at their low concentration.\",\"PeriodicalId\":360124,\"journal\":{\"name\":\"Журнал неорганической химии\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Журнал неорганической химии\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31857/s0044457x24020038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Журнал неорганической химии","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/s0044457x24020038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and alloying of zinc sulfide in a homogeneous system based on dodecane, its identification and optical properties
Zinc sulfide doped with Mn2+ ions was synthesized in a homogeneous dodecane medium by the method of emerging reagents. By methods of chemical and X-ray phase analysis, IR spectroscopy, electron microprobe microscopy, identification of products was carried out, photographs of the surface of powder particles (SEM) were recorded. Based on the totality of the results, a conclusion is made about the formation of nanoscale objects having a polytype structure with a predominance of distorted cubic crystals forming agglomerates up to 10 microns in size in ZnS powder and up to 100 microns in ZnS–Mn powder. The formation of nanoscale ZnS particles is confirmed by spectral data. The effect of manganese ions on the photoluminescence (FL) of the powder is manifested by a change in the type of the descending branch of the ZnS–Mn FL band, it is associated with recombination processes at the levels of defects formed by Mn2+ ions in the ZnS structure at their low concentration.