为北达科他州热拌沥青路面开发平衡混合料设计回转(Ndesign)

Nabil Suleiman, Anjo Mate, D. Gedafa, Bruce Dockter
{"title":"为北达科他州热拌沥青路面开发平衡混合料设计回转(Ndesign)","authors":"Nabil Suleiman, Anjo Mate, D. Gedafa, Bruce Dockter","doi":"10.1177/03611981241260705","DOIUrl":null,"url":null,"abstract":"There is a need to develop a new mix design criterion for North Dakota especially for medium- and low-volume traffic pavements, where the durability performance of the hot-mix asphalt (HMA) is of the most importance. High Ndesign numbers tend to lower the asphalt binder, thus lowering the durability of the asphalt mix. In contrast, if Ndesign is reduced, it tends to increase the asphalt binder, thus improving the durability of the asphalt mix. The main objective of this study was to develop balanced mix Ndesign values for North Dakota pavements based on the HMA performance with respect to resistance to rutting, low-temperature cracking, and fatigue cracking. Project mix samples were constructed and tested based on Ndesign values of 75, 65, 55, or 50 gyrations. The sample matrix included fine aggregate angularity (FAA) values of 45, 43, and 40, representing high-, medium-, and low-volume pavements, respectively. The matrix also included the asphalt binders PG 58S-28, PG 58H-34, and PG 58H-28. An analysis of variance (ANOVA) was done on the performance results and showed that the results corresponding to the various gyration levels were significantly different and can be compared. Test results revealed that a lower number of gyrations and a higher binder content resulted in higher resistance to fatigue and thermal cracking, while rut resistance stayed above acceptable levels. Based on the test results, the authors recommend an Ndesign of 65 gyrations for the high-volume pavements and 50 gyrations for intermediate- and low-volume pavements.","PeriodicalId":309251,"journal":{"name":"Transportation Research Record: Journal of the Transportation Research Board","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing Balanced Mix Design Gyrations (Ndesign) for North Dakota’s Hot-Mix Asphalt Pavements\",\"authors\":\"Nabil Suleiman, Anjo Mate, D. Gedafa, Bruce Dockter\",\"doi\":\"10.1177/03611981241260705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a need to develop a new mix design criterion for North Dakota especially for medium- and low-volume traffic pavements, where the durability performance of the hot-mix asphalt (HMA) is of the most importance. High Ndesign numbers tend to lower the asphalt binder, thus lowering the durability of the asphalt mix. In contrast, if Ndesign is reduced, it tends to increase the asphalt binder, thus improving the durability of the asphalt mix. The main objective of this study was to develop balanced mix Ndesign values for North Dakota pavements based on the HMA performance with respect to resistance to rutting, low-temperature cracking, and fatigue cracking. Project mix samples were constructed and tested based on Ndesign values of 75, 65, 55, or 50 gyrations. The sample matrix included fine aggregate angularity (FAA) values of 45, 43, and 40, representing high-, medium-, and low-volume pavements, respectively. The matrix also included the asphalt binders PG 58S-28, PG 58H-34, and PG 58H-28. An analysis of variance (ANOVA) was done on the performance results and showed that the results corresponding to the various gyration levels were significantly different and can be compared. Test results revealed that a lower number of gyrations and a higher binder content resulted in higher resistance to fatigue and thermal cracking, while rut resistance stayed above acceptable levels. Based on the test results, the authors recommend an Ndesign of 65 gyrations for the high-volume pavements and 50 gyrations for intermediate- and low-volume pavements.\",\"PeriodicalId\":309251,\"journal\":{\"name\":\"Transportation Research Record: Journal of the Transportation Research Board\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Record: Journal of the Transportation Research Board\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03611981241260705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record: Journal of the Transportation Research Board","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981241260705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有必要为北达科他州制定新的混合料设计标准,特别是针对中、低流量交通路面,因为热拌沥青(HMA)的耐久性能最为重要。高 Ndesign 值往往会降低沥青粘结剂,从而降低沥青混合料的耐久性。相反,如果降低 Ndesign 值,则会增加沥青粘结剂,从而提高沥青混合料的耐久性。本研究的主要目的是根据 HMA 在抗车辙、抗低温开裂和抗疲劳开裂方面的性能,为北达科他州的路面制定平衡的混合料 Ndesign 值。根据 75、65、55 或 50 的 Ndesign 值,对项目混合料样本进行了构建和测试。样本矩阵包括细集料角度 (FAA) 值 45、43 和 40,分别代表高、中和低容量路面。矩阵还包括沥青粘结剂 PG 58S-28、PG 58H-34 和 PG 58H-28。对性能结果进行了方差分析(ANOVA),结果表明,不同回旋度的结果差异显著,可以进行比较。试验结果表明,回转次数越少、粘结剂含量越高,抗疲劳和抗热裂纹的能力就越强,而抗车辙能力则保持在可接受的水平之上。根据测试结果,作者建议高容量路面的 Ndesign 值为 65 回转,中低容量路面的 Ndesign 值为 50 回转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing Balanced Mix Design Gyrations (Ndesign) for North Dakota’s Hot-Mix Asphalt Pavements
There is a need to develop a new mix design criterion for North Dakota especially for medium- and low-volume traffic pavements, where the durability performance of the hot-mix asphalt (HMA) is of the most importance. High Ndesign numbers tend to lower the asphalt binder, thus lowering the durability of the asphalt mix. In contrast, if Ndesign is reduced, it tends to increase the asphalt binder, thus improving the durability of the asphalt mix. The main objective of this study was to develop balanced mix Ndesign values for North Dakota pavements based on the HMA performance with respect to resistance to rutting, low-temperature cracking, and fatigue cracking. Project mix samples were constructed and tested based on Ndesign values of 75, 65, 55, or 50 gyrations. The sample matrix included fine aggregate angularity (FAA) values of 45, 43, and 40, representing high-, medium-, and low-volume pavements, respectively. The matrix also included the asphalt binders PG 58S-28, PG 58H-34, and PG 58H-28. An analysis of variance (ANOVA) was done on the performance results and showed that the results corresponding to the various gyration levels were significantly different and can be compared. Test results revealed that a lower number of gyrations and a higher binder content resulted in higher resistance to fatigue and thermal cracking, while rut resistance stayed above acceptable levels. Based on the test results, the authors recommend an Ndesign of 65 gyrations for the high-volume pavements and 50 gyrations for intermediate- and low-volume pavements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Traffic Safety Analysis using Unmanned Aerial Vehicle Technology at Unsignalized Intersections in Heterogeneous Traffic Role of Bystanders on Women’s Perception of Personal Security When Using Public Transport Comprehensive Investigation of Pedestrian Hit-and-Run Crashes: Applying XGBoost and Binary Logistic Regression Model Insights for Sustainable Urban Transport via Private Charging Pile Sharing in the Electric Vehicle Sector Correlates of Modal Substitution and Induced Travel of Ridehailing in California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1