金薄膜上金纳米线中的电驱动空腔质子

Junhao Zhang, Yu Wu, Wenna Zhou, Jibo Tang, Shunping Zhang, Hongxing Xu
{"title":"金薄膜上金纳米线中的电驱动空腔质子","authors":"Junhao Zhang, Yu Wu, Wenna Zhou, Jibo Tang, Shunping Zhang, Hongxing Xu","doi":"10.1088/2632-959x/ad6836","DOIUrl":null,"url":null,"abstract":"\n Light emission via inelastic tunneling electrons is appealing for integrated optoelectronic devices due to its femtosecond time scale that can in principle allow terahertz modulation bandwidth. It has gained renewed interest since 2015 due to the improved quantum efficiency, highly tunable emission wavelength, linewidth, or directionality once the electrodes are designed as a plasmonic nanocavity. However, efficient construction of stable tunnel junctions with desired plasmonic resonances is still technically challenging because of the subnanometer precision required in the electrical and optical design. Here, we demonstrate an easily accessible electrically driven cavity plasmon in metal-insulator-metal (MIM) tunnel junctions, comprised by a Au nanowire (NW) across two separate ultrasmooth Au electrodes. Two layers of self-assembled thiol molecule defines a reliable tunneling barrier. The contribution from the localized cavity plasmons to the total light emission is found to be dominant over that from the propagating surface plasmon polariton in the MIM waveguide, different from the traditional explanations. This work introduces a simplified method for constructing electrically driven cavity plasmons using crystalline metals, which holds promise for applications in in-situ chemical or biosensing and the development of flexible light-emitting metasurfaces.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrically driven cavity plasmons in Au nanowire over Au film\",\"authors\":\"Junhao Zhang, Yu Wu, Wenna Zhou, Jibo Tang, Shunping Zhang, Hongxing Xu\",\"doi\":\"10.1088/2632-959x/ad6836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Light emission via inelastic tunneling electrons is appealing for integrated optoelectronic devices due to its femtosecond time scale that can in principle allow terahertz modulation bandwidth. It has gained renewed interest since 2015 due to the improved quantum efficiency, highly tunable emission wavelength, linewidth, or directionality once the electrodes are designed as a plasmonic nanocavity. However, efficient construction of stable tunnel junctions with desired plasmonic resonances is still technically challenging because of the subnanometer precision required in the electrical and optical design. Here, we demonstrate an easily accessible electrically driven cavity plasmon in metal-insulator-metal (MIM) tunnel junctions, comprised by a Au nanowire (NW) across two separate ultrasmooth Au electrodes. Two layers of self-assembled thiol molecule defines a reliable tunneling barrier. The contribution from the localized cavity plasmons to the total light emission is found to be dominant over that from the propagating surface plasmon polariton in the MIM waveguide, different from the traditional explanations. This work introduces a simplified method for constructing electrically driven cavity plasmons using crystalline metals, which holds promise for applications in in-situ chemical or biosensing and the development of flexible light-emitting metasurfaces.\",\"PeriodicalId\":501827,\"journal\":{\"name\":\"Nano Express\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-959x/ad6836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/ad6836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过非弹性隧穿电子发射的光具有飞秒级的时间尺度,原则上可实现太赫兹调制带宽,因此对集成光电器件很有吸引力。一旦将电极设计成等离子体纳米腔,其量子效率、高度可调的发射波长、线宽或方向性都会得到改善,因此自 2015 年以来,这种技术再次受到关注。然而,由于电学和光学设计需要亚纳米精度,因此高效构建具有所需等离子共振的稳定隧道结在技术上仍具有挑战性。在这里,我们展示了金属-绝缘体-金属(MIM)隧道结中易于获得的电驱动空腔等离子体,它由金纳米线(NW)穿过两个独立的超光滑金电极组成。两层自组装硫醇分子构成了可靠的隧道势垒。研究发现,在 MIM 波导中,局部空腔等离子体对总光发射的贡献比传播的表面等离子体极化子更大,这与传统的解释不同。这项研究介绍了一种利用结晶金属构建电驱动空腔质子的简化方法,有望应用于原位化学或生物传感以及柔性发光超表面的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrically driven cavity plasmons in Au nanowire over Au film
Light emission via inelastic tunneling electrons is appealing for integrated optoelectronic devices due to its femtosecond time scale that can in principle allow terahertz modulation bandwidth. It has gained renewed interest since 2015 due to the improved quantum efficiency, highly tunable emission wavelength, linewidth, or directionality once the electrodes are designed as a plasmonic nanocavity. However, efficient construction of stable tunnel junctions with desired plasmonic resonances is still technically challenging because of the subnanometer precision required in the electrical and optical design. Here, we demonstrate an easily accessible electrically driven cavity plasmon in metal-insulator-metal (MIM) tunnel junctions, comprised by a Au nanowire (NW) across two separate ultrasmooth Au electrodes. Two layers of self-assembled thiol molecule defines a reliable tunneling barrier. The contribution from the localized cavity plasmons to the total light emission is found to be dominant over that from the propagating surface plasmon polariton in the MIM waveguide, different from the traditional explanations. This work introduces a simplified method for constructing electrically driven cavity plasmons using crystalline metals, which holds promise for applications in in-situ chemical or biosensing and the development of flexible light-emitting metasurfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis, characterization and magneto-structural properties of geometrical and compositional modulated nanowires A comparative study of broadband PbS quantum dots/graphene photodetectors with monolayer and bilayer graphene Occurrence of the collective Ziman limit of heat transport in cubic semiconductors Si, Ge, AlAs and AlP: scattering channels and size effects Structure and optical properties of ZnxCd1-xS and Cu:ZnxCd1-xS templated on DNA molecules Lycium ruthenicum stem extract mediated green synthesis of MnO2/Mn3(PO4)2 composite nanowire electrocatalyst for oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1