材料和几何参数对高掺杂 Ge1-xSnx 光栅中等离子模式共振线宽的影响

F. Berkmann, P. Povolni, D. Schwarz, Inga Anita Fischer
{"title":"材料和几何参数对高掺杂 Ge1-xSnx 光栅中等离子模式共振线宽的影响","authors":"F. Berkmann, P. Povolni, D. Schwarz, Inga Anita Fischer","doi":"10.1088/1361-6463/ad67ea","DOIUrl":null,"url":null,"abstract":"\n Highly doped group IV semiconductors such as Ge or GeSn are promising candidates for plasmonic mid infrared applications. The lower effective mass of GeSn alloys in comparison to pure Ge can result in lower plasma wavelengths and extend the application wavelength range. Devices made from doped GeSn alloys, therefore, are one interesting route towards plasmonic applications in the MIR wavelength range, possibly extending to the NIR. Here, we specifically explore how spectrally narrow plasmonic resonances can be obtained in comb-like grating antennas by combining aspects of material growth with geometry optimization. We investigate both in simulation and in experiment how the interplay of localised surface plasmon resonances (LSPR) and Rayleigh anomalies (RA) can be tuned to achieve narrow extinction peaks originating from the resulting surface lattice resonances (SLR) generated in our antennas made from highly doped Ge1‑xSnx.Keywords: term, term, term","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of material and geometry parameters on resonance linewidths of plasmonic modes in gratings made from highly doped Ge1-xSnx\",\"authors\":\"F. Berkmann, P. Povolni, D. Schwarz, Inga Anita Fischer\",\"doi\":\"10.1088/1361-6463/ad67ea\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Highly doped group IV semiconductors such as Ge or GeSn are promising candidates for plasmonic mid infrared applications. The lower effective mass of GeSn alloys in comparison to pure Ge can result in lower plasma wavelengths and extend the application wavelength range. Devices made from doped GeSn alloys, therefore, are one interesting route towards plasmonic applications in the MIR wavelength range, possibly extending to the NIR. Here, we specifically explore how spectrally narrow plasmonic resonances can be obtained in comb-like grating antennas by combining aspects of material growth with geometry optimization. We investigate both in simulation and in experiment how the interplay of localised surface plasmon resonances (LSPR) and Rayleigh anomalies (RA) can be tuned to achieve narrow extinction peaks originating from the resulting surface lattice resonances (SLR) generated in our antennas made from highly doped Ge1‑xSnx.Keywords: term, term, term\",\"PeriodicalId\":507822,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad67ea\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad67ea","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高掺杂 IV 族半导体(如 Ge 或 GeSn)是等离子体中红外应用的理想候选材料。与纯 Ge 相比,GeSn 合金的有效质量更低,因此等离子体波长更低,应用波长范围更广。因此,由掺杂 GeSn 合金制成的器件是在中红外波长范围内实现等离子应用的一条有趣途径,并有可能延伸到近红外。在此,我们特别探讨了如何通过将材料生长与几何优化相结合,在梳状光栅天线中获得光谱窄的等离子共振。我们在模拟和实验中研究了如何调整局部表面等离子体共振(LSPR)和瑞利反常(RA)的相互作用,以获得窄消光峰值,而窄消光峰值源于高掺杂 Ge1-xSnx 制成的天线中产生的表面晶格共振(SLR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of material and geometry parameters on resonance linewidths of plasmonic modes in gratings made from highly doped Ge1-xSnx
Highly doped group IV semiconductors such as Ge or GeSn are promising candidates for plasmonic mid infrared applications. The lower effective mass of GeSn alloys in comparison to pure Ge can result in lower plasma wavelengths and extend the application wavelength range. Devices made from doped GeSn alloys, therefore, are one interesting route towards plasmonic applications in the MIR wavelength range, possibly extending to the NIR. Here, we specifically explore how spectrally narrow plasmonic resonances can be obtained in comb-like grating antennas by combining aspects of material growth with geometry optimization. We investigate both in simulation and in experiment how the interplay of localised surface plasmon resonances (LSPR) and Rayleigh anomalies (RA) can be tuned to achieve narrow extinction peaks originating from the resulting surface lattice resonances (SLR) generated in our antennas made from highly doped Ge1‑xSnx.Keywords: term, term, term
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical properties and cage transformations in CO2-CH4 heterohydrates: a molecular dynamics and machine learning study Reconfigurable narrow-band bandpass filter using electrically-coupled open-loop resonators based on liquid crystals Controllable location-dependent frequency conversion based on space-time transformation optics On-chip photonic digital-to-analog converter by phase-change-based bit control Spontaneous Anomalous Hall effects in magnetic and non-magnetic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1