用于评估实体瘤病变范围的术前和术中分子成像和检测概念

IF 3.1 Q2 ONCOLOGY Oncology Reviews Pub Date : 2024-07-25 DOI:10.3389/or.2024.1409410
Charles L. Hitchcock, G. Chapman, C. Mojzisik, Jerry K. Mueller, Edward W. Martin
{"title":"用于评估实体瘤病变范围的术前和术中分子成像和检测概念","authors":"Charles L. Hitchcock, G. Chapman, C. Mojzisik, Jerry K. Mueller, Edward W. Martin","doi":"10.3389/or.2024.1409410","DOIUrl":null,"url":null,"abstract":"The authors propose a concept of “systems engineering,” the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient’s EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer’s signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.","PeriodicalId":19487,"journal":{"name":"Oncology Reviews","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors\",\"authors\":\"Charles L. Hitchcock, G. Chapman, C. Mojzisik, Jerry K. Mueller, Edward W. Martin\",\"doi\":\"10.3389/or.2024.1409410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose a concept of “systems engineering,” the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient’s EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer’s signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.\",\"PeriodicalId\":19487,\"journal\":{\"name\":\"Oncology Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/or.2024.1409410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/or.2024.1409410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

作者提出了一个 "系统工程 "的概念,即评估实体瘤病变组织范围(EODT)的方法。我们以结直肠癌(CRC)和胃泌素瘤的临床经验为基础,对这一概念进行了模型验证,其中包括 CRC 患者的短期和长期生存数据。这一概念适用于各种实体瘤,它整合了手术、核医学、放射学、病理学和肿瘤学的资源,这些资源是术前和术中评估患者 EODT 所必需的。这一概念始于一名经活检证实患有癌症的患者。适当的优先定位器(PL)是一种分子,它能优先结合非恶性组织中缺乏的与癌症相关的分子靶点(即肿瘤标志物),是基本要素。静脉注射后检测 PL 需要用适当的放射性核素示踪剂、荧光探针或两者标记 PL。对示踪剂信号的术前成像需要单独使用或与计算机断层扫描(CT)结合使用分子成像模式。其中包括用于术前成像的正电子发射断层扫描(PET)、PET/CT、单光子发射计算机断层扫描(SPECT)、SPECT/CT,用于术中成像的伽马相机,以及用于精确定位的伽马检测探针。同样,荧光标记的PL也需要相应的相机和探针。这种方法可为外科医生提供 R0 切除术所需的实时信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors
The authors propose a concept of “systems engineering,” the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient’s EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer’s signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncology Reviews
Oncology Reviews ONCOLOGY-
CiteScore
6.30
自引率
0.00%
发文量
9
审稿时长
9 weeks
期刊介绍: Oncology Reviews is a quarterly peer-reviewed, international journal that publishes authoritative state-of-the-art reviews on preclinical and clinical aspects of oncology. The journal will provide up-to-date information on the latest achievements in different fields of oncology for both practising clinicians and basic researchers. Oncology Reviews aims at being international in scope and readership, as reflected also by its Editorial Board, gathering the world leading experts in both pre-clinical research and everyday clinical practice. The journal is open for publication of supplements, monothematic issues and for publishing abstracts of scientific meetings; conditions can be obtained from the Editor-in-Chief or the publisher.
期刊最新文献
Tumor therapeutics in the era of "RECIST": past, current insights, and future prospects. Colorectal cancer and associated genetic, lifestyle, cigarette, nargileh-hookah use and alcohol consumption risk factors: a comprehensive case-control study. Environment and gynaecologic cancers. Tracheal Tumors: Clinical Practice Guidelines for Palliative Treatment and Follow-Up. Barriers and Facilitators Related to Undertaking Physical Activities in Colorectal Cancer Patients: A Scoping Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1