苯酚在 Ni-P/Hβ 和 Ni-P/Ce-β 上的加氢脱氧反应:改变分散性和酸度的影响

Catalysts Pub Date : 2024-07-25 DOI:10.3390/catal14080475
Lin Ma, Yan Li, Zhiquan Yu, Jie Zou, Yingying Jing, Wei Wang
{"title":"苯酚在 Ni-P/Hβ 和 Ni-P/Ce-β 上的加氢脱氧反应:改变分散性和酸度的影响","authors":"Lin Ma, Yan Li, Zhiquan Yu, Jie Zou, Yingying Jing, Wei Wang","doi":"10.3390/catal14080475","DOIUrl":null,"url":null,"abstract":"The supported Ni-P catalysts (marked as s-Ni-P/Hβ(3) and s-Ni-P/Ce-β(3)) were prepared by an incipient wetness step-impregnation method, and characterized by XRD, N2 physisorption, TEM, XPS, and NH3-TPD. The catalytic hydrodeoxygenation (HDO) performance was assessed using phenol in water (5.0 wt%) or in decalin (1.0 wt%) as the feed. After the introduction of Ce, the conversion of phenol increased due to the high dispersity of the active site. However, compared to s-Ni-P/Hβ(3), the amount of total and strong acid sites of s-Ni-P/Ce-β(3) decreased, restraining the cycloisomerization of cyclohexane to form methyl-cyclopentane. Moreover, the kinetics of the APHDO and OPHDO of phenol catalyzed by s-Ni-P/Hβ(3) and s-Ni-P/Ce-β(3) were investigated.","PeriodicalId":505577,"journal":{"name":"Catalysts","volume":"21 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity\",\"authors\":\"Lin Ma, Yan Li, Zhiquan Yu, Jie Zou, Yingying Jing, Wei Wang\",\"doi\":\"10.3390/catal14080475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The supported Ni-P catalysts (marked as s-Ni-P/Hβ(3) and s-Ni-P/Ce-β(3)) were prepared by an incipient wetness step-impregnation method, and characterized by XRD, N2 physisorption, TEM, XPS, and NH3-TPD. The catalytic hydrodeoxygenation (HDO) performance was assessed using phenol in water (5.0 wt%) or in decalin (1.0 wt%) as the feed. After the introduction of Ce, the conversion of phenol increased due to the high dispersity of the active site. However, compared to s-Ni-P/Hβ(3), the amount of total and strong acid sites of s-Ni-P/Ce-β(3) decreased, restraining the cycloisomerization of cyclohexane to form methyl-cyclopentane. Moreover, the kinetics of the APHDO and OPHDO of phenol catalyzed by s-Ni-P/Hβ(3) and s-Ni-P/Ce-β(3) were investigated.\",\"PeriodicalId\":505577,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"21 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14080475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/catal14080475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用初湿分步浸渍法制备了支撑型 Ni-P 催化剂(标记为 s-Ni-P/Hβ(3) 和 s-Ni-P/Ce-β(3)),并通过 XRD、N2 物理吸附、TEM、XPS 和 NH3-TPD 对其进行了表征。以水中(5.0 wt%)或癸醛(1.0 wt%)中的苯酚为原料,评估了催化加氢脱氧(HDO)的性能。引入 Ce 后,由于活性位点的高度分散性,苯酚的转化率提高了。然而,与 s-Ni-P/Hβ(3)相比,s-Ni-P/Ce-β(3)的总酸性位点和强酸性位点数量减少,从而抑制了环己烷的环异构化生成甲基环戊烷。此外,还研究了 s-Ni-P/Hβ(3) 和 s-Ni-P/Ce-β(3) 催化苯酚的 APHDO 和 OPHDO 的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity
The supported Ni-P catalysts (marked as s-Ni-P/Hβ(3) and s-Ni-P/Ce-β(3)) were prepared by an incipient wetness step-impregnation method, and characterized by XRD, N2 physisorption, TEM, XPS, and NH3-TPD. The catalytic hydrodeoxygenation (HDO) performance was assessed using phenol in water (5.0 wt%) or in decalin (1.0 wt%) as the feed. After the introduction of Ce, the conversion of phenol increased due to the high dispersity of the active site. However, compared to s-Ni-P/Hβ(3), the amount of total and strong acid sites of s-Ni-P/Ce-β(3) decreased, restraining the cycloisomerization of cyclohexane to form methyl-cyclopentane. Moreover, the kinetics of the APHDO and OPHDO of phenol catalyzed by s-Ni-P/Hβ(3) and s-Ni-P/Ce-β(3) were investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Facile Immersing Synthesis of Pt Single Atoms Supported on Sulfide for Bifunctional toward Seawater Electrolysis Construction of Cu2O-ZnO/Cellulose Composites for Enhancing the Photocatalytic Performance The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity BiVO4-Based Photocatalysts for the Degradation of Antibiotics in Wastewater: Calcination Role after Solvothermal Synthesis Green Synthesis of Copper Oxide Nanoparticles from Waste Solar Panels Using Piper nigrum Fruit Extract and Their Antibacterial Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1