取代 Ho3+ 对 MgCuHoxFe2-xO4 (0 < x < 0.030) 体系的结构、形态、光学、电学、热电和磁学特性的影响

Q4 Chemistry Asian Journal of Chemistry Pub Date : 2024-07-25 DOI:10.14233/ajchem.2024.31894
M. Bhanu, D. Ravinder, Police Vishnuvardhan Reddy, K. Rajashekhar, G. Sunitha, G. Kumar, J. L. Naik, G. Vinod
{"title":"取代 Ho3+ 对 MgCuHoxFe2-xO4 (0 < x < 0.030) 体系的结构、形态、光学、电学、热电和磁学特性的影响","authors":"M. Bhanu, D. Ravinder, Police Vishnuvardhan Reddy, K. Rajashekhar, G. Sunitha, G. Kumar, J. L. Naik, G. Vinod","doi":"10.14233/ajchem.2024.31894","DOIUrl":null,"url":null,"abstract":"A series of rare earth (Ho3+) doped magnesium-copper nanoferrites with the general chemical compositions of Mg0.5Cu0.5HoxFe2-xO4 (where x = 0.000, 0.005, 0.010, 0.015, 0.020, 0.025 and 0.030) was fabricated by citrate sol-gel auto-combustion technique. The fabricated materials were investigated through powder XRD, FESEM, EDX, HRTEM, FTIR, UV-Vis, DC resistivity, TEP and VSM for magnetic properties. The crystallite size of the samples was determined to be in the range of 33-40 nm with increased Ho3+ content and the powder-XRD investigations validated the spinel cubic structure of the samples with the space group Fd3m. The analysis demonstrated that the lattice constant was reduced from 8.403 to 8.356 Å and according to the FE-SEM micrographs, the morphology of the samples were found to be spherical. The HR-TEM micrographs show that average particle size decreases from 64 to 48 nm. The FTIR examination revealed that their ν1 and ν2 absorption bands were located between 412-401 cm–1 and 562-547 cm–1, respectively and the optical band gap was found to be 2.77-3.28 eV. In Mg-Cu nanoferrites with Ho doping, there was no obvious increase in the elasticity moduli. It was observed that the thermal energy required to transform the p-type Mg-Cu nanoferrites from semiconducting to n-type semiconducting behaviour increases with increasing Ho doping and composition. The M-H loop saturation magnetization (Ms), coercivity (Hc) and retentivity (Mr) values were all enhanced when the Ho3+ concentration increased and varied anisotropically with Ho doping. The findings of this study suggested that Mg-Cu ferrites doped with Ho3+ might be beneficial for magnetic resonance imaging in biomedicine.","PeriodicalId":8494,"journal":{"name":"Asian Journal of Chemistry","volume":"54 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Ho3+ Substitution on Structural, Morphological, Optical, Electrical, Thermoelectrical and Magnetic Properties of MgCuHoxFe2-xO4 (0 < x < 0.030) System\",\"authors\":\"M. Bhanu, D. Ravinder, Police Vishnuvardhan Reddy, K. Rajashekhar, G. Sunitha, G. Kumar, J. L. Naik, G. Vinod\",\"doi\":\"10.14233/ajchem.2024.31894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A series of rare earth (Ho3+) doped magnesium-copper nanoferrites with the general chemical compositions of Mg0.5Cu0.5HoxFe2-xO4 (where x = 0.000, 0.005, 0.010, 0.015, 0.020, 0.025 and 0.030) was fabricated by citrate sol-gel auto-combustion technique. The fabricated materials were investigated through powder XRD, FESEM, EDX, HRTEM, FTIR, UV-Vis, DC resistivity, TEP and VSM for magnetic properties. The crystallite size of the samples was determined to be in the range of 33-40 nm with increased Ho3+ content and the powder-XRD investigations validated the spinel cubic structure of the samples with the space group Fd3m. The analysis demonstrated that the lattice constant was reduced from 8.403 to 8.356 Å and according to the FE-SEM micrographs, the morphology of the samples were found to be spherical. The HR-TEM micrographs show that average particle size decreases from 64 to 48 nm. The FTIR examination revealed that their ν1 and ν2 absorption bands were located between 412-401 cm–1 and 562-547 cm–1, respectively and the optical band gap was found to be 2.77-3.28 eV. In Mg-Cu nanoferrites with Ho doping, there was no obvious increase in the elasticity moduli. It was observed that the thermal energy required to transform the p-type Mg-Cu nanoferrites from semiconducting to n-type semiconducting behaviour increases with increasing Ho doping and composition. The M-H loop saturation magnetization (Ms), coercivity (Hc) and retentivity (Mr) values were all enhanced when the Ho3+ concentration increased and varied anisotropically with Ho doping. The findings of this study suggested that Mg-Cu ferrites doped with Ho3+ might be beneficial for magnetic resonance imaging in biomedicine.\",\"PeriodicalId\":8494,\"journal\":{\"name\":\"Asian Journal of Chemistry\",\"volume\":\"54 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14233/ajchem.2024.31894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14233/ajchem.2024.31894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

利用柠檬酸盐溶胶-凝胶自燃烧技术制备了一系列掺杂稀土(Ho3+)的镁铜纳米铁氧体,其一般化学成分为 Mg0.5Cu0.5HoxFe2-xO4(其中 x = 0.000、0.005、0.010、0.015、0.020、0.025 和 0.030)。通过粉末 XRD、FESEM、EDX、HRTEM、FTIR、UV-Vis、直流电阻率、TEP 和 VSM 对制备的材料进行了磁性研究。经测定,随着 Ho3+ 含量的增加,样品的晶体尺寸在 33-40 nm 之间,粉末 XRD 研究验证了样品的尖晶石立方结构,空间群为 Fd3m。分析表明,晶格常数从 8.403 Å 降低到 8.356 Å,根据 FE-SEM 显微照片,样品的形态呈球形。HR-TEM 显微照片显示,平均粒径从 64 纳米减小到 48 纳米。傅立叶变换红外光谱(FTIR)检测显示,其 ν1 和 ν2 吸收带分别位于 412-401 cm-1 和 562-547 cm-1 之间,光带隙为 2.77-3.28 eV。在掺杂了 Ho 的 Mg-Cu 纳米铁氧体中,弹性模量没有明显增加。据观察,p 型 Mg-Cu 纳米铁氧体从半导体行为转变为 n 型半导体行为所需的热能随着 Ho 掺杂量和成分的增加而增加。当 Ho3+ 浓度增加时,M-H 环饱和磁化率(Ms)、矫顽力(Hc)和保持力(Mr)值都有所提高,并且随着 Ho 掺杂量的增加而各向异性地变化。研究结果表明,掺杂了 Ho3+ 的镁铜铁氧体可能有利于生物医学中的磁共振成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Ho3+ Substitution on Structural, Morphological, Optical, Electrical, Thermoelectrical and Magnetic Properties of MgCuHoxFe2-xO4 (0 < x < 0.030) System
A series of rare earth (Ho3+) doped magnesium-copper nanoferrites with the general chemical compositions of Mg0.5Cu0.5HoxFe2-xO4 (where x = 0.000, 0.005, 0.010, 0.015, 0.020, 0.025 and 0.030) was fabricated by citrate sol-gel auto-combustion technique. The fabricated materials were investigated through powder XRD, FESEM, EDX, HRTEM, FTIR, UV-Vis, DC resistivity, TEP and VSM for magnetic properties. The crystallite size of the samples was determined to be in the range of 33-40 nm with increased Ho3+ content and the powder-XRD investigations validated the spinel cubic structure of the samples with the space group Fd3m. The analysis demonstrated that the lattice constant was reduced from 8.403 to 8.356 Å and according to the FE-SEM micrographs, the morphology of the samples were found to be spherical. The HR-TEM micrographs show that average particle size decreases from 64 to 48 nm. The FTIR examination revealed that their ν1 and ν2 absorption bands were located between 412-401 cm–1 and 562-547 cm–1, respectively and the optical band gap was found to be 2.77-3.28 eV. In Mg-Cu nanoferrites with Ho doping, there was no obvious increase in the elasticity moduli. It was observed that the thermal energy required to transform the p-type Mg-Cu nanoferrites from semiconducting to n-type semiconducting behaviour increases with increasing Ho doping and composition. The M-H loop saturation magnetization (Ms), coercivity (Hc) and retentivity (Mr) values were all enhanced when the Ho3+ concentration increased and varied anisotropically with Ho doping. The findings of this study suggested that Mg-Cu ferrites doped with Ho3+ might be beneficial for magnetic resonance imaging in biomedicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Chemistry
Asian Journal of Chemistry 化学-化学综合
CiteScore
0.80
自引率
0.00%
发文量
229
审稿时长
4 months
期刊介绍: Information not localized
期刊最新文献
Evaluation of Anticancer Activity of Organo-Montmorillonites and their Plumbagin-Nanohybrids Triton X-100 Mediated Electron Transfer Reactions between Iron(III) Polypyridyl Complexes and Phenylsulfinylacetic Acids Nanogold Supported Titania Loaded SBA-15: An Efficient Catalyst for Reduction of 4-Nitrophenol Molybdate-based Nanocrystalline Materials for Efficient Environmental Remediation and Electrochemical Energy Conversion Applications: An Update Assessment and Mitigation Strategies for Heavy Metals and Bacterial Contamination in Badshahpur Lake, Gurugram, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1