P. Tsiakanikas, Konstantina Athanasopoulou, Ioanna A. Darioti, Vasiliki Taxiarchoula Agiassoti, Stamatis Theocharis, Andreas Scorilas, P. Adamopoulos
{"title":"超越染色体:解码人类恶性肿瘤中染色体外环状 DNA (eccDNA) 重要性的最新进展","authors":"P. Tsiakanikas, Konstantina Athanasopoulou, Ioanna A. Darioti, Vasiliki Taxiarchoula Agiassoti, Stamatis Theocharis, Andreas Scorilas, P. Adamopoulos","doi":"10.3390/life14080922","DOIUrl":null,"url":null,"abstract":"Extrachromosomal circular DNA (eccDNA) is a form of a circular double-stranded DNA that exists independently of conventional chromosomes. eccDNA exhibits a broad and random distribution across eukaryotic cells and has been associated with tumor-related properties due to its ability to harbor the complete gene information of oncogenes. The complex and multifaceted mechanisms underlying eccDNA formation include pathways such as DNA damage repair, breakage–fusion–bridge (BFB) mechanisms, chromothripsis, and cell apoptosis. Of note, eccDNA plays a pivotal role in tumor development, genetic heterogeneity, and therapeutic resistance. The high copy number and transcriptional activity of oncogenes carried by eccDNA contribute to the accelerated growth of tumors. Notably, the amplification of oncogenes on eccDNA is implicated in the malignant progression of cancer cells. The improvement of high-throughput sequencing techniques has greatly enhanced our knowledge of eccDNA by allowing for a detailed examination of its genetic structures and functions. However, we still lack a comprehensive and efficient annotation for eccDNA, while challenges persist in the study and understanding of the functional role of eccDNA, emphasizing the need for the development of robust methodologies. The potential clinical applications of eccDNA, such as its role as a measurable biomarker or therapeutic target in diseases, particularly within the spectrum of human malignancies, is a promising field for future research. In conclusion, eccDNA represents a quite dynamic and multifunctional genetic entity with far-reaching implications in cancer pathogenesis and beyond. Further research is essential to unravel the molecular pathways of eccDNA formation, elucidate its functional roles, and explore its clinical applications. Addressing these aspects is crucial for advancing our understanding of genomic instability and developing novel strategies for tailored therapeutics, especially in cancer.","PeriodicalId":18182,"journal":{"name":"Life","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies\",\"authors\":\"P. Tsiakanikas, Konstantina Athanasopoulou, Ioanna A. Darioti, Vasiliki Taxiarchoula Agiassoti, Stamatis Theocharis, Andreas Scorilas, P. Adamopoulos\",\"doi\":\"10.3390/life14080922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extrachromosomal circular DNA (eccDNA) is a form of a circular double-stranded DNA that exists independently of conventional chromosomes. eccDNA exhibits a broad and random distribution across eukaryotic cells and has been associated with tumor-related properties due to its ability to harbor the complete gene information of oncogenes. The complex and multifaceted mechanisms underlying eccDNA formation include pathways such as DNA damage repair, breakage–fusion–bridge (BFB) mechanisms, chromothripsis, and cell apoptosis. Of note, eccDNA plays a pivotal role in tumor development, genetic heterogeneity, and therapeutic resistance. The high copy number and transcriptional activity of oncogenes carried by eccDNA contribute to the accelerated growth of tumors. Notably, the amplification of oncogenes on eccDNA is implicated in the malignant progression of cancer cells. The improvement of high-throughput sequencing techniques has greatly enhanced our knowledge of eccDNA by allowing for a detailed examination of its genetic structures and functions. However, we still lack a comprehensive and efficient annotation for eccDNA, while challenges persist in the study and understanding of the functional role of eccDNA, emphasizing the need for the development of robust methodologies. The potential clinical applications of eccDNA, such as its role as a measurable biomarker or therapeutic target in diseases, particularly within the spectrum of human malignancies, is a promising field for future research. In conclusion, eccDNA represents a quite dynamic and multifunctional genetic entity with far-reaching implications in cancer pathogenesis and beyond. Further research is essential to unravel the molecular pathways of eccDNA formation, elucidate its functional roles, and explore its clinical applications. Addressing these aspects is crucial for advancing our understanding of genomic instability and developing novel strategies for tailored therapeutics, especially in cancer.\",\"PeriodicalId\":18182,\"journal\":{\"name\":\"Life\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/life14080922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/life14080922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies
Extrachromosomal circular DNA (eccDNA) is a form of a circular double-stranded DNA that exists independently of conventional chromosomes. eccDNA exhibits a broad and random distribution across eukaryotic cells and has been associated with tumor-related properties due to its ability to harbor the complete gene information of oncogenes. The complex and multifaceted mechanisms underlying eccDNA formation include pathways such as DNA damage repair, breakage–fusion–bridge (BFB) mechanisms, chromothripsis, and cell apoptosis. Of note, eccDNA plays a pivotal role in tumor development, genetic heterogeneity, and therapeutic resistance. The high copy number and transcriptional activity of oncogenes carried by eccDNA contribute to the accelerated growth of tumors. Notably, the amplification of oncogenes on eccDNA is implicated in the malignant progression of cancer cells. The improvement of high-throughput sequencing techniques has greatly enhanced our knowledge of eccDNA by allowing for a detailed examination of its genetic structures and functions. However, we still lack a comprehensive and efficient annotation for eccDNA, while challenges persist in the study and understanding of the functional role of eccDNA, emphasizing the need for the development of robust methodologies. The potential clinical applications of eccDNA, such as its role as a measurable biomarker or therapeutic target in diseases, particularly within the spectrum of human malignancies, is a promising field for future research. In conclusion, eccDNA represents a quite dynamic and multifunctional genetic entity with far-reaching implications in cancer pathogenesis and beyond. Further research is essential to unravel the molecular pathways of eccDNA formation, elucidate its functional roles, and explore its clinical applications. Addressing these aspects is crucial for advancing our understanding of genomic instability and developing novel strategies for tailored therapeutics, especially in cancer.