A. Alsulaili, Noor Aboramyah, Nasser Alenezi, M. Alkhalidi
{"title":"通过机器学习和统计方法推进干旱气候下的用电量预测","authors":"A. Alsulaili, Noor Aboramyah, Nasser Alenezi, M. Alkhalidi","doi":"10.3390/su16156326","DOIUrl":null,"url":null,"abstract":"This study investigated the impact of meteorological factors on electricity consumption in arid regions, characterized by extreme temperatures and high humidity. Statistical approaches such as multiple linear regression (MLR) and multiplicative time series (MTS), alongside the advanced machine learning method Extreme Gradient Boosting (XGBoost) were utilized to analyze historical consumption data. The models developed were rigorously evaluated using established measures such as the Coefficient of Determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The performance of the models was highly accurate, with regression-type models consistently achieving an R2 greater than 0.9. Additionally, other metrics such as RMSE and MAPE demonstrated exceptionally low values relative to the overall data scale, reinforcing the models’ precision and reliability. The analysis not only highlights the significant meteorological drivers of electricity consumption but also assesses the models’ effectiveness in managing seasonal and irregular variations. These findings offer crucial insights for improving energy management and promoting sustainability in similar climatic regions.","PeriodicalId":509360,"journal":{"name":"Sustainability","volume":"17 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Electricity Consumption Forecasts in Arid Climates through Machine Learning and Statistical Approaches\",\"authors\":\"A. Alsulaili, Noor Aboramyah, Nasser Alenezi, M. Alkhalidi\",\"doi\":\"10.3390/su16156326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the impact of meteorological factors on electricity consumption in arid regions, characterized by extreme temperatures and high humidity. Statistical approaches such as multiple linear regression (MLR) and multiplicative time series (MTS), alongside the advanced machine learning method Extreme Gradient Boosting (XGBoost) were utilized to analyze historical consumption data. The models developed were rigorously evaluated using established measures such as the Coefficient of Determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The performance of the models was highly accurate, with regression-type models consistently achieving an R2 greater than 0.9. Additionally, other metrics such as RMSE and MAPE demonstrated exceptionally low values relative to the overall data scale, reinforcing the models’ precision and reliability. The analysis not only highlights the significant meteorological drivers of electricity consumption but also assesses the models’ effectiveness in managing seasonal and irregular variations. These findings offer crucial insights for improving energy management and promoting sustainability in similar climatic regions.\",\"PeriodicalId\":509360,\"journal\":{\"name\":\"Sustainability\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/su16156326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/su16156326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advancing Electricity Consumption Forecasts in Arid Climates through Machine Learning and Statistical Approaches
This study investigated the impact of meteorological factors on electricity consumption in arid regions, characterized by extreme temperatures and high humidity. Statistical approaches such as multiple linear regression (MLR) and multiplicative time series (MTS), alongside the advanced machine learning method Extreme Gradient Boosting (XGBoost) were utilized to analyze historical consumption data. The models developed were rigorously evaluated using established measures such as the Coefficient of Determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The performance of the models was highly accurate, with regression-type models consistently achieving an R2 greater than 0.9. Additionally, other metrics such as RMSE and MAPE demonstrated exceptionally low values relative to the overall data scale, reinforcing the models’ precision and reliability. The analysis not only highlights the significant meteorological drivers of electricity consumption but also assesses the models’ effectiveness in managing seasonal and irregular variations. These findings offer crucial insights for improving energy management and promoting sustainability in similar climatic regions.