新模型可更好地预测印度易受森林火灾影响的地区

Q4 Earth and Planetary Sciences Eos Pub Date : 2024-07-24 DOI:10.1029/2024eo240307
Ravi Pragathi
{"title":"新模型可更好地预测印度易受森林火灾影响的地区","authors":"Ravi Pragathi","doi":"10.1029/2024eo240307","DOIUrl":null,"url":null,"abstract":"Researchers incorporated local atmospheric parameters and terrain data to more accurately estimate the probability of fire in a specific area.","PeriodicalId":52431,"journal":{"name":"Eos","volume":"56 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Model Can Better Predict Areas Vulnerable to Forest Fires in India\",\"authors\":\"Ravi Pragathi\",\"doi\":\"10.1029/2024eo240307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers incorporated local atmospheric parameters and terrain data to more accurately estimate the probability of fire in a specific area.\",\"PeriodicalId\":52431,\"journal\":{\"name\":\"Eos\",\"volume\":\"56 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2024eo240307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2024eo240307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

研究人员结合当地大气参数和地形数据,更准确地估算出特定地区发生火灾的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Model Can Better Predict Areas Vulnerable to Forest Fires in India
Researchers incorporated local atmospheric parameters and terrain data to more accurately estimate the probability of fire in a specific area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eos
Eos Earth and Planetary Sciences-Earth and Planetary Sciences (all)
CiteScore
0.70
自引率
0.00%
发文量
493
期刊最新文献
Scientists Captured the First Glimpse of a Rare Polar Aurora Solar Panel Arrays May Affect Soil Carbon Levels Pedro Val: River Science Runs in the Family Thanh Huong “Helen” Nguyen: Chasing Down Pathogens Britney Schmidt: Following the Ice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1