水凝胶在从水和废水中回收氮和磷化合物中的应用:概述

Sustainability Pub Date : 2024-07-24 DOI:10.3390/su16156321
Daniel Szopa, Paulina Wróbel, Beata Anwajler, A. Witek-Krowiak
{"title":"水凝胶在从水和废水中回收氮和磷化合物中的应用:概述","authors":"Daniel Szopa, Paulina Wróbel, Beata Anwajler, A. Witek-Krowiak","doi":"10.3390/su16156321","DOIUrl":null,"url":null,"abstract":"This article provides an overview of the diverse applications of hydrogels in nutrient recovery from water and wastewater. Due to their unique properties, such as high water-retention capacity, nutrient rerelease, and tunable porosity, hydrogels have emerged as promising materials for efficient nutrient capture and recycling. It has been suggested that hydrogels, depending on their composition, can be reused in agriculture, especially in drought-prone areas. Further research paths have been identified that could expand their application in these regions. However, the main focus of the article is to highlight the current gaps in understanding how hydrogels bind nitrogen and phosphorus compounds. The study underscores the need for research that specifically examines how different components of hydrogel matrices interact with each other and with recovered nutrients. Furthermore, it is essential to assess how various nutrient-recovery parameters, such as temperature, pH, and heavy metal content, interact with each other and with specific matrix compositions. This type of research is crucial for enhancing both the recovery efficiency and selectivity of these hydrogels, which are critical for advancing nutrient-recovery technologies and agricultural applications. A comprehensive research approach involves using structured research methodologies and optimization techniques to streamline studies and identify crucial relationships.","PeriodicalId":509360,"journal":{"name":"Sustainability","volume":"67 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogel Applications in Nitrogen and Phosphorus Compounds Recovery from Water and Wastewater: An Overview\",\"authors\":\"Daniel Szopa, Paulina Wróbel, Beata Anwajler, A. Witek-Krowiak\",\"doi\":\"10.3390/su16156321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provides an overview of the diverse applications of hydrogels in nutrient recovery from water and wastewater. Due to their unique properties, such as high water-retention capacity, nutrient rerelease, and tunable porosity, hydrogels have emerged as promising materials for efficient nutrient capture and recycling. It has been suggested that hydrogels, depending on their composition, can be reused in agriculture, especially in drought-prone areas. Further research paths have been identified that could expand their application in these regions. However, the main focus of the article is to highlight the current gaps in understanding how hydrogels bind nitrogen and phosphorus compounds. The study underscores the need for research that specifically examines how different components of hydrogel matrices interact with each other and with recovered nutrients. Furthermore, it is essential to assess how various nutrient-recovery parameters, such as temperature, pH, and heavy metal content, interact with each other and with specific matrix compositions. This type of research is crucial for enhancing both the recovery efficiency and selectivity of these hydrogels, which are critical for advancing nutrient-recovery technologies and agricultural applications. A comprehensive research approach involves using structured research methodologies and optimization techniques to streamline studies and identify crucial relationships.\",\"PeriodicalId\":509360,\"journal\":{\"name\":\"Sustainability\",\"volume\":\"67 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/su16156321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/su16156321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了水凝胶在从水和废水中回收营养物质方面的各种应用。由于水凝胶具有独特的特性,如较高的保水能力、养分释放能力和可调孔隙率,水凝胶已成为高效捕获和回收养分的理想材料。有研究表明,根据水凝胶的成分,水凝胶可重新用于农业,尤其是易旱地区。已经确定了进一步的研究路径,可以扩大水凝胶在这些地区的应用。不过,文章的主要重点是强调目前在了解水凝胶如何结合氮和磷化合物方面存在的差距。这项研究强调,有必要开展研究,具体探讨水凝胶基质的不同成分如何相互影响以及如何与回收的养分相互作用。此外,还必须评估温度、pH 值和重金属含量等各种养分回收参数之间以及与特定基质成分之间的相互作用。这类研究对于提高这些水凝胶的回收效率和选择性至关重要,而这对于推进养分回收技术和农业应用至关重要。综合研究方法包括使用结构化研究方法和优化技术来简化研究并确定关键关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogel Applications in Nitrogen and Phosphorus Compounds Recovery from Water and Wastewater: An Overview
This article provides an overview of the diverse applications of hydrogels in nutrient recovery from water and wastewater. Due to their unique properties, such as high water-retention capacity, nutrient rerelease, and tunable porosity, hydrogels have emerged as promising materials for efficient nutrient capture and recycling. It has been suggested that hydrogels, depending on their composition, can be reused in agriculture, especially in drought-prone areas. Further research paths have been identified that could expand their application in these regions. However, the main focus of the article is to highlight the current gaps in understanding how hydrogels bind nitrogen and phosphorus compounds. The study underscores the need for research that specifically examines how different components of hydrogel matrices interact with each other and with recovered nutrients. Furthermore, it is essential to assess how various nutrient-recovery parameters, such as temperature, pH, and heavy metal content, interact with each other and with specific matrix compositions. This type of research is crucial for enhancing both the recovery efficiency and selectivity of these hydrogels, which are critical for advancing nutrient-recovery technologies and agricultural applications. A comprehensive research approach involves using structured research methodologies and optimization techniques to streamline studies and identify crucial relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal Evolution and Drivers of Carbon Storage from a Sustainable Development Perspective: A Case Study of the Region along the Middle and Lower Yellow River, China Digital Inclusive Finance, Digital Technology Innovation, and Carbon Emission Intensity Sustainability in Leadership: The Implicit Associations of the First-Person Pronouns and Leadership Effectiveness Based on Word Embedding Association Test Towards a Taxonomy of E-Waste Urban Mining Technology Design and Adoption: A Systematic Literature Review Charting Pollution Effects on Tourism: A Regional Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1