Y. Diseño, Construcción De, Un Chasis, Para Un, Prototipo Eléctrico, J. Monoplaza, Patache, B. Moreta, J. Pancha, R. Pozo, V. Congreso, Ingeniería Mecánica
{"title":"单座电动原型车底盘的设计与制造","authors":"Y. Diseño, Construcción De, Un Chasis, Para Un, Prototipo Eléctrico, J. Monoplaza, Patache, B. Moreta, J. Pancha, R. Pozo, V. Congreso, Ingeniería Mecánica","doi":"10.18502/espoch.v3i3.16612","DOIUrl":null,"url":null,"abstract":"This research aimed to design and build a lightweight chassis for an electric single-seater vehicle through software, computer-aided design (CAD), and computer-aided engineering (CAE) for adequate weight optimization. The dimensions that the pilot must comply with were developed as a first step for the construction of the chassis, through a statistical study to determine its mass and height. Once this phase was completed, the shape, size, and thickness of the profile were selected, considering availability in the environment, mechanical performance, and constructability; obtaining a square profile of 1.25 inches x 1.1 mm thick was the best option. Subsequently, we proceeded with the selection of materials where they were compared in different phases of the process. Through decision matrices and simulations using CAE software, g aluminum 6063 T5 was obtained as the most optimal material for manufacturing of the chassis (65% lighter than structural steel and has mechanical characteristics that meet construction needs). Finally, the chassis manufacturing process was carried out, which was essential for the good performance offered at the time of real tests. To verify the resistance and mechanical performance, several tests were carried out to determine the reliability of the chassis, which is why it has a fatigue safety factor of 3.065, satisfactorily resisting the fluctuating loads applied. It is concluded that the chassis was designed and built using CAD/CAE software having a mass of 10.5 kg, in addition to presenting a high resistance. It is recommended that for certain eventualities or buckling, the thickness of the profile could be increased, or, in turn, the structure to be reinforced with carbon fiber. \nKeywords: prototype, electric single seat, computer aid design (CAD), computer aid engineering (CAE), assembly, Monocoque. \nResumen \nSe ha planteado como objetivo diseñar y construir un chasis liviano para un vehículo monoplaza eléctrico mediante los softwares, diseño asistido por computadora (CAD)/ ingeniería asistida por computadora (CAE) para una adecuada optimización del peso. Para la construcción del chasis se desarrolló como primer paso el dimensionamiento que debe cumplir el piloto a través de un estudio estadístico para determinar la masa y altura de este. Una vez concluida esta fase, se procedió con la selección de forma, tamaño y espesor de perfil, tomando en cuenta la disponibilidad en el medio, las prestaciones mecánicas y la facilidad al momento de construir, obteniendo como la mejor opción un perfil cuadrado de 1 1/4 pulgadas x 1.1 mm de espesor. Posteriormente se procedió con la selección de materiales y para ello se realizó la comparación de los mismos en diferentes fases del proceso, mediante matrices de decisión y simulaciones mediante software CAE, obteniendo como el material óptimo para la manufacturación del chasis al aluminio 6063 T5, siendo 65% más liviano que el acero estructural y además cuenta con características mecánicas que complacen las necesidades de construcción. Finalmente, se realizó el proceso de manufactura del chasis, siendo fundamental por las buenas prestaciones que ofreció al momento de realizar pruebas reales. Para la verificación de la resistencia y prestaciones mecánicas, se realizó varios ensayos que determinaron la fiabilidad del chasis, por lo que cuenta con un factor de seguridad por fatiga de 3,065, resistiendo satisfactoriamente a las cargas fluctuantes aplicadas. Se concluye que el chasis fue diseñado y construido mediante software CAD /CAE teniendo una masa de 10.5 Kg, además de presentar una alta resistencia. Se recomienda que para ciertas eventualidades o pandeo se podría aumentar el espesor del perfil o a su vez reforzar la estructura con fibra de carbono. \nPalabras Clave: Prototipo; Monoplaza; Diseño Asistido por Computadora (CAD); Ingeniería Asistida por Computadora (CAE); Ensamblaje; Monocasco.","PeriodicalId":11737,"journal":{"name":"ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.","volume":"59 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Construction of a Chassis for a Single-seat Electric Prototype\",\"authors\":\"Y. Diseño, Construcción De, Un Chasis, Para Un, Prototipo Eléctrico, J. Monoplaza, Patache, B. Moreta, J. Pancha, R. Pozo, V. Congreso, Ingeniería Mecánica\",\"doi\":\"10.18502/espoch.v3i3.16612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aimed to design and build a lightweight chassis for an electric single-seater vehicle through software, computer-aided design (CAD), and computer-aided engineering (CAE) for adequate weight optimization. The dimensions that the pilot must comply with were developed as a first step for the construction of the chassis, through a statistical study to determine its mass and height. Once this phase was completed, the shape, size, and thickness of the profile were selected, considering availability in the environment, mechanical performance, and constructability; obtaining a square profile of 1.25 inches x 1.1 mm thick was the best option. Subsequently, we proceeded with the selection of materials where they were compared in different phases of the process. Through decision matrices and simulations using CAE software, g aluminum 6063 T5 was obtained as the most optimal material for manufacturing of the chassis (65% lighter than structural steel and has mechanical characteristics that meet construction needs). Finally, the chassis manufacturing process was carried out, which was essential for the good performance offered at the time of real tests. To verify the resistance and mechanical performance, several tests were carried out to determine the reliability of the chassis, which is why it has a fatigue safety factor of 3.065, satisfactorily resisting the fluctuating loads applied. It is concluded that the chassis was designed and built using CAD/CAE software having a mass of 10.5 kg, in addition to presenting a high resistance. It is recommended that for certain eventualities or buckling, the thickness of the profile could be increased, or, in turn, the structure to be reinforced with carbon fiber. \\nKeywords: prototype, electric single seat, computer aid design (CAD), computer aid engineering (CAE), assembly, Monocoque. \\nResumen \\nSe ha planteado como objetivo diseñar y construir un chasis liviano para un vehículo monoplaza eléctrico mediante los softwares, diseño asistido por computadora (CAD)/ ingeniería asistida por computadora (CAE) para una adecuada optimización del peso. Para la construcción del chasis se desarrolló como primer paso el dimensionamiento que debe cumplir el piloto a través de un estudio estadístico para determinar la masa y altura de este. Una vez concluida esta fase, se procedió con la selección de forma, tamaño y espesor de perfil, tomando en cuenta la disponibilidad en el medio, las prestaciones mecánicas y la facilidad al momento de construir, obteniendo como la mejor opción un perfil cuadrado de 1 1/4 pulgadas x 1.1 mm de espesor. Posteriormente se procedió con la selección de materiales y para ello se realizó la comparación de los mismos en diferentes fases del proceso, mediante matrices de decisión y simulaciones mediante software CAE, obteniendo como el material óptimo para la manufacturación del chasis al aluminio 6063 T5, siendo 65% más liviano que el acero estructural y además cuenta con características mecánicas que complacen las necesidades de construcción. Finalmente, se realizó el proceso de manufactura del chasis, siendo fundamental por las buenas prestaciones que ofreció al momento de realizar pruebas reales. Para la verificación de la resistencia y prestaciones mecánicas, se realizó varios ensayos que determinaron la fiabilidad del chasis, por lo que cuenta con un factor de seguridad por fatiga de 3,065, resistiendo satisfactoriamente a las cargas fluctuantes aplicadas. Se concluye que el chasis fue diseñado y construido mediante software CAD /CAE teniendo una masa de 10.5 Kg, además de presentar una alta resistencia. Se recomienda que para ciertas eventualidades o pandeo se podría aumentar el espesor del perfil o a su vez reforzar la estructura con fibra de carbono. \\nPalabras Clave: Prototipo; Monoplaza; Diseño Asistido por Computadora (CAD); Ingeniería Asistida por Computadora (CAE); Ensamblaje; Monocasco.\",\"PeriodicalId\":11737,\"journal\":{\"name\":\"ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.\",\"volume\":\"59 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/espoch.v3i3.16612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/espoch.v3i3.16612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Construction of a Chassis for a Single-seat Electric Prototype
This research aimed to design and build a lightweight chassis for an electric single-seater vehicle through software, computer-aided design (CAD), and computer-aided engineering (CAE) for adequate weight optimization. The dimensions that the pilot must comply with were developed as a first step for the construction of the chassis, through a statistical study to determine its mass and height. Once this phase was completed, the shape, size, and thickness of the profile were selected, considering availability in the environment, mechanical performance, and constructability; obtaining a square profile of 1.25 inches x 1.1 mm thick was the best option. Subsequently, we proceeded with the selection of materials where they were compared in different phases of the process. Through decision matrices and simulations using CAE software, g aluminum 6063 T5 was obtained as the most optimal material for manufacturing of the chassis (65% lighter than structural steel and has mechanical characteristics that meet construction needs). Finally, the chassis manufacturing process was carried out, which was essential for the good performance offered at the time of real tests. To verify the resistance and mechanical performance, several tests were carried out to determine the reliability of the chassis, which is why it has a fatigue safety factor of 3.065, satisfactorily resisting the fluctuating loads applied. It is concluded that the chassis was designed and built using CAD/CAE software having a mass of 10.5 kg, in addition to presenting a high resistance. It is recommended that for certain eventualities or buckling, the thickness of the profile could be increased, or, in turn, the structure to be reinforced with carbon fiber.
Keywords: prototype, electric single seat, computer aid design (CAD), computer aid engineering (CAE), assembly, Monocoque.
Resumen
Se ha planteado como objetivo diseñar y construir un chasis liviano para un vehículo monoplaza eléctrico mediante los softwares, diseño asistido por computadora (CAD)/ ingeniería asistida por computadora (CAE) para una adecuada optimización del peso. Para la construcción del chasis se desarrolló como primer paso el dimensionamiento que debe cumplir el piloto a través de un estudio estadístico para determinar la masa y altura de este. Una vez concluida esta fase, se procedió con la selección de forma, tamaño y espesor de perfil, tomando en cuenta la disponibilidad en el medio, las prestaciones mecánicas y la facilidad al momento de construir, obteniendo como la mejor opción un perfil cuadrado de 1 1/4 pulgadas x 1.1 mm de espesor. Posteriormente se procedió con la selección de materiales y para ello se realizó la comparación de los mismos en diferentes fases del proceso, mediante matrices de decisión y simulaciones mediante software CAE, obteniendo como el material óptimo para la manufacturación del chasis al aluminio 6063 T5, siendo 65% más liviano que el acero estructural y además cuenta con características mecánicas que complacen las necesidades de construcción. Finalmente, se realizó el proceso de manufactura del chasis, siendo fundamental por las buenas prestaciones que ofreció al momento de realizar pruebas reales. Para la verificación de la resistencia y prestaciones mecánicas, se realizó varios ensayos que determinaron la fiabilidad del chasis, por lo que cuenta con un factor de seguridad por fatiga de 3,065, resistiendo satisfactoriamente a las cargas fluctuantes aplicadas. Se concluye que el chasis fue diseñado y construido mediante software CAD /CAE teniendo una masa de 10.5 Kg, además de presentar una alta resistencia. Se recomienda que para ciertas eventualidades o pandeo se podría aumentar el espesor del perfil o a su vez reforzar la estructura con fibra de carbono.
Palabras Clave: Prototipo; Monoplaza; Diseño Asistido por Computadora (CAD); Ingeniería Asistida por Computadora (CAE); Ensamblaje; Monocasco.