考虑跑道分配偏好和交叉路口,确定到达和出发顺序

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE Aerospace Pub Date : 2024-07-24 DOI:10.3390/aerospace11080604
Ji Ma, Daniel Delahaye, Man Liang
{"title":"考虑跑道分配偏好和交叉路口,确定到达和出发顺序","authors":"Ji Ma, Daniel Delahaye, Man Liang","doi":"10.3390/aerospace11080604","DOIUrl":null,"url":null,"abstract":"Aircraft sequencing has the potential to decrease flight delays and improve operational efficiency at airports. This paper presents the aircraft sequencing problem (ASP) on multiple runways with complex interactions by allocating flights on runways and optimizing landing times, take-off times, and crossing times simultaneously in a uniform framework. The problem was formulated as a mixed-integer program considering realistic operational constraints, including runway assignment preferences based on the entry/exit fixes of the terminal maneuvering area (TMA), minimum runway separation, time window, and arrival crossing rules. Variable-fixing strategies were applied, to strengthen the formulation. A first-come-first-served (FCFS) heuristic was proposed for comparison. Various instances from the literature and from realistic data sets were tested. Our computational study showed that the solution approach optimizes runway schedules, to achieve significantly fewer flight delays, taking runway assignment preferences and arrival crossings into account.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arrival and Departure Sequencing, Considering Runway Assignment Preferences and Crossings\",\"authors\":\"Ji Ma, Daniel Delahaye, Man Liang\",\"doi\":\"10.3390/aerospace11080604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aircraft sequencing has the potential to decrease flight delays and improve operational efficiency at airports. This paper presents the aircraft sequencing problem (ASP) on multiple runways with complex interactions by allocating flights on runways and optimizing landing times, take-off times, and crossing times simultaneously in a uniform framework. The problem was formulated as a mixed-integer program considering realistic operational constraints, including runway assignment preferences based on the entry/exit fixes of the terminal maneuvering area (TMA), minimum runway separation, time window, and arrival crossing rules. Variable-fixing strategies were applied, to strengthen the formulation. A first-come-first-served (FCFS) heuristic was proposed for comparison. Various instances from the literature and from realistic data sets were tested. Our computational study showed that the solution approach optimizes runway schedules, to achieve significantly fewer flight delays, taking runway assignment preferences and arrival crossings into account.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11080604\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11080604","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

飞机排序具有减少航班延误和提高机场运行效率的潜力。本文提出了在具有复杂交互作用的多条跑道上的飞机排序问题(ASP),即在统一框架下同时在跑道上分配航班并优化着陆时间、起飞时间和穿越时间。该问题以混合整数程序的形式提出,考虑了现实的运行约束条件,包括基于航站楼机动区(TMA)出入口固定点的跑道分配偏好、最小跑道间隔、时间窗口和到达穿越规则。采用了可变定点策略,以加强计算。为进行比较,还提出了先到先得(FCFS)启发式。对文献和现实数据集中的各种实例进行了测试。我们的计算研究表明,考虑到跑道分配偏好和到达交叉,该解决方法优化了跑道时刻表,大大减少了航班延误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arrival and Departure Sequencing, Considering Runway Assignment Preferences and Crossings
Aircraft sequencing has the potential to decrease flight delays and improve operational efficiency at airports. This paper presents the aircraft sequencing problem (ASP) on multiple runways with complex interactions by allocating flights on runways and optimizing landing times, take-off times, and crossing times simultaneously in a uniform framework. The problem was formulated as a mixed-integer program considering realistic operational constraints, including runway assignment preferences based on the entry/exit fixes of the terminal maneuvering area (TMA), minimum runway separation, time window, and arrival crossing rules. Variable-fixing strategies were applied, to strengthen the formulation. A first-come-first-served (FCFS) heuristic was proposed for comparison. Various instances from the literature and from realistic data sets were tested. Our computational study showed that the solution approach optimizes runway schedules, to achieve significantly fewer flight delays, taking runway assignment preferences and arrival crossings into account.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
期刊最新文献
On the Exploration of Temporal Fusion Transformers for Anomaly Detection with Multivariate Aviation Time-Series Data Assessment of Flyby Methods as Applied to Close Encounters among Asteroids A Multi-Objective Dynamic Mission-Scheduling Algorithm Considering Perturbations for Earth Observation Satellites Numerical Study on Far-Field Noise Characteristic Generated by Wall-Mounted Swept Finite-Span Airfoil within Transonic Flow Number of Blades’ Influence on the Performance of Rotor with Equal Solidity in Open and Shrouded Configurations: Experimental Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1