可持续生产:将药用植物与鱼菜共生中的鱼类养殖相结合--微型综述

Sustainability Pub Date : 2024-07-24 DOI:10.3390/su16156337
S. Stoyanova, I. Sirakov, K. Velichkova
{"title":"可持续生产:将药用植物与鱼菜共生中的鱼类养殖相结合--微型综述","authors":"S. Stoyanova, I. Sirakov, K. Velichkova","doi":"10.3390/su16156337","DOIUrl":null,"url":null,"abstract":"Aquaponics, defined as a sustainable technology combining aquaculture and hydroponics, integrates plant and fish production into one system. Aquaponics technology offers several major advantages over conventional methods of raising fish and/or plants. In this system, plants act as a natural biological filter, purifying the water so that the same amount can be used repeatedly. Fish, on the other hand, are a natural source of nutrients. This contributes to the aquaponics system’s substantial economic potential, thanks to its use of virtually free nutrients, dramatically reduced water consumption, and the elimination of filter systems, making this system innovative and sustainable. On the other hand, the use of medicinal plants for the needs of the pharmaceutical, cosmetics, and food industries is often associated with a decrease in their natural reserves. Utilizing aquaponics for the production of medicinal plants could reduce the pressure on these natural reserves. As a result, aquaponics has emerged as one of the most environmentally friendly methods of cultivating plant species. The concept of aquaponics, which evolved from traditional hydroponic systems, has gained worldwide recognition through the effective use of symbiosis. It refers to the coexistence and interaction of different organisms, facilitating their growth and life cycle processes. Unlike hydroponics, which requires the purification of nutrient solutions due to plant waste, aquaponics takes advantage of the natural cycle of waste and nutrient exchange between plants and fish. Fish waste serves as organic fertilizer for the plants, while the plants help purify the water for the fish. This symbiotic relationship not only reduces the environmental impact associated with aquaculture wastewater but also provides a sustainable method of food production. The integrated system reduces infrastructure costs, conserves water, and minimizes the potential for environmental pollution. Furthermore, it provides an opportunity for increased profitability from both crop and fish production. Cultivation of medicinal plants within aquaponic systems can be carried out year-round, offering a continuous supply of valuable pharmacological resources. This review examines suitable medicinal plants for aquaponic cultivation and evaluates their pharmacological benefits to humans.","PeriodicalId":509360,"journal":{"name":"Sustainability","volume":"36 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable Production: Integrating Medicinal Plants with Fish Farming in Aquaponics—A Mini Review\",\"authors\":\"S. Stoyanova, I. Sirakov, K. Velichkova\",\"doi\":\"10.3390/su16156337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aquaponics, defined as a sustainable technology combining aquaculture and hydroponics, integrates plant and fish production into one system. Aquaponics technology offers several major advantages over conventional methods of raising fish and/or plants. In this system, plants act as a natural biological filter, purifying the water so that the same amount can be used repeatedly. Fish, on the other hand, are a natural source of nutrients. This contributes to the aquaponics system’s substantial economic potential, thanks to its use of virtually free nutrients, dramatically reduced water consumption, and the elimination of filter systems, making this system innovative and sustainable. On the other hand, the use of medicinal plants for the needs of the pharmaceutical, cosmetics, and food industries is often associated with a decrease in their natural reserves. Utilizing aquaponics for the production of medicinal plants could reduce the pressure on these natural reserves. As a result, aquaponics has emerged as one of the most environmentally friendly methods of cultivating plant species. The concept of aquaponics, which evolved from traditional hydroponic systems, has gained worldwide recognition through the effective use of symbiosis. It refers to the coexistence and interaction of different organisms, facilitating their growth and life cycle processes. Unlike hydroponics, which requires the purification of nutrient solutions due to plant waste, aquaponics takes advantage of the natural cycle of waste and nutrient exchange between plants and fish. Fish waste serves as organic fertilizer for the plants, while the plants help purify the water for the fish. This symbiotic relationship not only reduces the environmental impact associated with aquaculture wastewater but also provides a sustainable method of food production. The integrated system reduces infrastructure costs, conserves water, and minimizes the potential for environmental pollution. Furthermore, it provides an opportunity for increased profitability from both crop and fish production. Cultivation of medicinal plants within aquaponic systems can be carried out year-round, offering a continuous supply of valuable pharmacological resources. This review examines suitable medicinal plants for aquaponic cultivation and evaluates their pharmacological benefits to humans.\",\"PeriodicalId\":509360,\"journal\":{\"name\":\"Sustainability\",\"volume\":\"36 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/su16156337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/su16156337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鱼菜共生被定义为一种结合水产养殖和水耕法的可持续技术,它将植物和鱼类生产整合到一个系统中。与传统的鱼类和/或植物养殖方法相比,鱼菜共生技术具有几大优势。在这个系统中,植物充当天然生物过滤器,净化水质,从而可以重复使用相同的水量。鱼则是天然的营养来源。这使得鱼菜共生系统具有巨大的经济潜力,因为它使用了几乎免费的养分,大大减少了用水量,而且无需过滤系统,从而使该系统具有创新性和可持续性。另一方面,为满足制药、化妆品和食品行业的需要而使用药用植物,往往会导致其自然储量的减少。利用鱼菜共生技术生产药用植物可以减少对这些自然保护区的压力。因此,鱼菜共生已成为培育植物物种的最环保方法之一。鱼菜共生的概念是由传统的水耕系统演变而来的,通过有效利用共生关系,鱼菜共生得到了全世界的认可。共生是指不同生物共存和互动,促进其生长和生命周期过程。鱼菜共生与水耕法不同,水耕法需要净化植物废弃物造成的营养液,而鱼菜共生则利用了植物和鱼之间废弃物和营养交换的自然循环。鱼的排泄物是植物的有机肥料,而植物则帮助鱼净化水质。这种共生关系不仅减少了水产养殖废水对环境的影响,还提供了一种可持续的食品生产方式。综合系统降低了基础设施成本,节约了水资源,并将环境污染的可能性降至最低。此外,它还为提高作物和鱼类生产的利润率提供了机会。在水生栽培系统中栽培药用植物可以全年进行,从而持续提供宝贵的药用资源。本综述探讨了适合水生栽培的药用植物,并评估了它们对人类的药理作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable Production: Integrating Medicinal Plants with Fish Farming in Aquaponics—A Mini Review
Aquaponics, defined as a sustainable technology combining aquaculture and hydroponics, integrates plant and fish production into one system. Aquaponics technology offers several major advantages over conventional methods of raising fish and/or plants. In this system, plants act as a natural biological filter, purifying the water so that the same amount can be used repeatedly. Fish, on the other hand, are a natural source of nutrients. This contributes to the aquaponics system’s substantial economic potential, thanks to its use of virtually free nutrients, dramatically reduced water consumption, and the elimination of filter systems, making this system innovative and sustainable. On the other hand, the use of medicinal plants for the needs of the pharmaceutical, cosmetics, and food industries is often associated with a decrease in their natural reserves. Utilizing aquaponics for the production of medicinal plants could reduce the pressure on these natural reserves. As a result, aquaponics has emerged as one of the most environmentally friendly methods of cultivating plant species. The concept of aquaponics, which evolved from traditional hydroponic systems, has gained worldwide recognition through the effective use of symbiosis. It refers to the coexistence and interaction of different organisms, facilitating their growth and life cycle processes. Unlike hydroponics, which requires the purification of nutrient solutions due to plant waste, aquaponics takes advantage of the natural cycle of waste and nutrient exchange between plants and fish. Fish waste serves as organic fertilizer for the plants, while the plants help purify the water for the fish. This symbiotic relationship not only reduces the environmental impact associated with aquaculture wastewater but also provides a sustainable method of food production. The integrated system reduces infrastructure costs, conserves water, and minimizes the potential for environmental pollution. Furthermore, it provides an opportunity for increased profitability from both crop and fish production. Cultivation of medicinal plants within aquaponic systems can be carried out year-round, offering a continuous supply of valuable pharmacological resources. This review examines suitable medicinal plants for aquaponic cultivation and evaluates their pharmacological benefits to humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal Evolution and Drivers of Carbon Storage from a Sustainable Development Perspective: A Case Study of the Region along the Middle and Lower Yellow River, China Digital Inclusive Finance, Digital Technology Innovation, and Carbon Emission Intensity Sustainability in Leadership: The Implicit Associations of the First-Person Pronouns and Leadership Effectiveness Based on Word Embedding Association Test Towards a Taxonomy of E-Waste Urban Mining Technology Design and Adoption: A Systematic Literature Review Charting Pollution Effects on Tourism: A Regional Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1