{"title":"5- 羟甲基糠醛氧化辅助水分离电催化剂的调制策略","authors":"Tongxue Zhang, Shuai Liu, Fumin Wang, Wenxian Liu, Xinyuan He, Qian Liu, Xubin Zhang, Xijun Liu","doi":"10.20517/microstructures.2023.93","DOIUrl":null,"url":null,"abstract":"To address energy shortages and environmental issues, prioritizing renewable energy development and usage is crucial. Employing renewable sources for water electrolysis offers a sustainable method for hydrogen generation. Reducing the water electrolysis potential is vital for efficient clean energy conversion and storage. Substituting the anodic oxygen evolution reaction in conventional hydrogen production from water electrolysis with the more thermodynamically favorable 5-hydroxymethylfurfural (HMF) oxidation reaction can greatly decrease overpotential and yield the valuable product 2,5-furan dicarboxylic acid. The key to this process is developing effective electrocatalysts to minimize the potential of the HMF electrooxidation-hydrogen production system. Therefore, this review provides a comprehensive introduction to the modulation strategies that affect the electronic and geometric structure of electrocatalysts for HMF oxidation-assisted water splitting. The strategies encompass heteroatom doping, defect projection, interface engineering, structural design, and multi-metal synergies. The catalysts are assessed from various angles, encompassing structural characterization, reaction mechanisms, and electrochemical performance. Finally, current challenges in the catalyst design and potential development of this promising field are proposed.","PeriodicalId":515723,"journal":{"name":"Microstructures","volume":"30 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation strategies of electrocatalysts for 5-hydroxymethylfurfural oxidation-assisted water splitting\",\"authors\":\"Tongxue Zhang, Shuai Liu, Fumin Wang, Wenxian Liu, Xinyuan He, Qian Liu, Xubin Zhang, Xijun Liu\",\"doi\":\"10.20517/microstructures.2023.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address energy shortages and environmental issues, prioritizing renewable energy development and usage is crucial. Employing renewable sources for water electrolysis offers a sustainable method for hydrogen generation. Reducing the water electrolysis potential is vital for efficient clean energy conversion and storage. Substituting the anodic oxygen evolution reaction in conventional hydrogen production from water electrolysis with the more thermodynamically favorable 5-hydroxymethylfurfural (HMF) oxidation reaction can greatly decrease overpotential and yield the valuable product 2,5-furan dicarboxylic acid. The key to this process is developing effective electrocatalysts to minimize the potential of the HMF electrooxidation-hydrogen production system. Therefore, this review provides a comprehensive introduction to the modulation strategies that affect the electronic and geometric structure of electrocatalysts for HMF oxidation-assisted water splitting. The strategies encompass heteroatom doping, defect projection, interface engineering, structural design, and multi-metal synergies. The catalysts are assessed from various angles, encompassing structural characterization, reaction mechanisms, and electrochemical performance. Finally, current challenges in the catalyst design and potential development of this promising field are proposed.\",\"PeriodicalId\":515723,\"journal\":{\"name\":\"Microstructures\",\"volume\":\"30 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microstructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/microstructures.2023.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microstructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulation strategies of electrocatalysts for 5-hydroxymethylfurfural oxidation-assisted water splitting
To address energy shortages and environmental issues, prioritizing renewable energy development and usage is crucial. Employing renewable sources for water electrolysis offers a sustainable method for hydrogen generation. Reducing the water electrolysis potential is vital for efficient clean energy conversion and storage. Substituting the anodic oxygen evolution reaction in conventional hydrogen production from water electrolysis with the more thermodynamically favorable 5-hydroxymethylfurfural (HMF) oxidation reaction can greatly decrease overpotential and yield the valuable product 2,5-furan dicarboxylic acid. The key to this process is developing effective electrocatalysts to minimize the potential of the HMF electrooxidation-hydrogen production system. Therefore, this review provides a comprehensive introduction to the modulation strategies that affect the electronic and geometric structure of electrocatalysts for HMF oxidation-assisted water splitting. The strategies encompass heteroatom doping, defect projection, interface engineering, structural design, and multi-metal synergies. The catalysts are assessed from various angles, encompassing structural characterization, reaction mechanisms, and electrochemical performance. Finally, current challenges in the catalyst design and potential development of this promising field are proposed.