K. Mäde, P. J. Kellerwessel, R. Sharma, U. Reisgen
{"title":"根据焊缝几何形状确定线弧快速成型制造的 A-prori 层高","authors":"K. Mäde, P. J. Kellerwessel, R. Sharma, U. Reisgen","doi":"10.1002/mawe.202300158","DOIUrl":null,"url":null,"abstract":"<p>The application of wire arc additive manufacturing (WAAM) for the production of large size components is currently limited, due to strong distortion and unprecise filling behavior. The resulting geometric and metallurgical irregularities pose a challenge to the process. The current approach of a layered structure cannot be adopted without adjustments when using wire arc additive manufacturing. Reasons include incompleteness, material accumulation and deformation. The combination of experimental weld geometry-determination and its numerical estimation is presented here as solution to this challenge. The procedure is based on the measurement of a weld bead cross-section-area. By convolution of a path matrix with a weld-geometry-function, the planned path is filled with the seam geometry. Subsequent summation of multiple matrices results in a height profile showing discontinuities and accumulations. Further validation tests show a good agreement between the method and experimentally determined problem areas. The presented optimisation procedure can be extended with material parameters. A local compensation for deformation can be achieved.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 7","pages":"995-1004"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mawe.202300158","citationCount":"0","resultStr":"{\"title\":\"A-prori layer height determination for wire arc additive manufacturing based on weld geometry\\n A-priori-Lagenhöhenbestimmung für drahtbasierte Lichtbogen-Additiv-Schweißverfahren auf Basis der Schweißnahtgeometrie\",\"authors\":\"K. Mäde, P. J. Kellerwessel, R. Sharma, U. Reisgen\",\"doi\":\"10.1002/mawe.202300158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The application of wire arc additive manufacturing (WAAM) for the production of large size components is currently limited, due to strong distortion and unprecise filling behavior. The resulting geometric and metallurgical irregularities pose a challenge to the process. The current approach of a layered structure cannot be adopted without adjustments when using wire arc additive manufacturing. Reasons include incompleteness, material accumulation and deformation. The combination of experimental weld geometry-determination and its numerical estimation is presented here as solution to this challenge. The procedure is based on the measurement of a weld bead cross-section-area. By convolution of a path matrix with a weld-geometry-function, the planned path is filled with the seam geometry. Subsequent summation of multiple matrices results in a height profile showing discontinuities and accumulations. Further validation tests show a good agreement between the method and experimentally determined problem areas. The presented optimisation procedure can be extended with material parameters. A local compensation for deformation can be achieved.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"55 7\",\"pages\":\"995-1004\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mawe.202300158\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300158\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300158","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A-prori layer height determination for wire arc additive manufacturing based on weld geometry
A-priori-Lagenhöhenbestimmung für drahtbasierte Lichtbogen-Additiv-Schweißverfahren auf Basis der Schweißnahtgeometrie
The application of wire arc additive manufacturing (WAAM) for the production of large size components is currently limited, due to strong distortion and unprecise filling behavior. The resulting geometric and metallurgical irregularities pose a challenge to the process. The current approach of a layered structure cannot be adopted without adjustments when using wire arc additive manufacturing. Reasons include incompleteness, material accumulation and deformation. The combination of experimental weld geometry-determination and its numerical estimation is presented here as solution to this challenge. The procedure is based on the measurement of a weld bead cross-section-area. By convolution of a path matrix with a weld-geometry-function, the planned path is filled with the seam geometry. Subsequent summation of multiple matrices results in a height profile showing discontinuities and accumulations. Further validation tests show a good agreement between the method and experimentally determined problem areas. The presented optimisation procedure can be extended with material parameters. A local compensation for deformation can be achieved.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.