将比较毒物基因组学数据库中的环境健康数据集转化为和弦图,使分子机制可视化

IF 3.6 Q2 TOXICOLOGY Frontiers in toxicology Pub Date : 2024-07-22 DOI:10.3389/ftox.2024.1437884
Brent Wyatt, A. P. Davis, Thomas C. Wiegers, Jolene Wiegers, Sakib Abrar, D. Sciaky, Fern Barkalow, Melissa Strong, C. Mattingly
{"title":"将比较毒物基因组学数据库中的环境健康数据集转化为和弦图,使分子机制可视化","authors":"Brent Wyatt, A. P. Davis, Thomas C. Wiegers, Jolene Wiegers, Sakib Abrar, D. Sciaky, Fern Barkalow, Melissa Strong, C. Mattingly","doi":"10.3389/ftox.2024.1437884","DOIUrl":null,"url":null,"abstract":"In environmental health, the specific molecular mechanisms connecting a chemical exposure to an adverse endpoint are often unknown, reflecting knowledge gaps. At the public Comparative Toxicogenomics Database (CTD; https://ctdbase.org/), we integrate manually curated, literature-based interactions from CTD to compute four-unit blocks of information organized as a potential step-wise molecular mechanism, known as “CGPD-tetramers,” wherein a chemical interacts with a gene product to trigger a phenotype which can be linked to a disease. These computationally derived datasets can be used to fill the gaps and offer testable mechanistic information. Users can generate CGPD-tetramers for any combination of chemical, gene, phenotype, and/or disease of interest at CTD; however, such queries typically result in the generation of thousands of CGPD-tetramers. Here, we describe a novel approach to transform these large datasets into user-friendly chord diagrams using R. This visualization process is straightforward, simple to implement, and accessible to inexperienced users that have never used R before. Combining CGPD-tetramers into a single chord diagram helps identify potential key chemicals, genes, phenotypes, and diseases. This visualization allows users to more readily analyze computational datasets that can fill the exposure knowledge gaps in the environmental health continuum.","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming environmental health datasets from the comparative toxicogenomics database into chord diagrams to visualize molecular mechanisms\",\"authors\":\"Brent Wyatt, A. P. Davis, Thomas C. Wiegers, Jolene Wiegers, Sakib Abrar, D. Sciaky, Fern Barkalow, Melissa Strong, C. Mattingly\",\"doi\":\"10.3389/ftox.2024.1437884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In environmental health, the specific molecular mechanisms connecting a chemical exposure to an adverse endpoint are often unknown, reflecting knowledge gaps. At the public Comparative Toxicogenomics Database (CTD; https://ctdbase.org/), we integrate manually curated, literature-based interactions from CTD to compute four-unit blocks of information organized as a potential step-wise molecular mechanism, known as “CGPD-tetramers,” wherein a chemical interacts with a gene product to trigger a phenotype which can be linked to a disease. These computationally derived datasets can be used to fill the gaps and offer testable mechanistic information. Users can generate CGPD-tetramers for any combination of chemical, gene, phenotype, and/or disease of interest at CTD; however, such queries typically result in the generation of thousands of CGPD-tetramers. Here, we describe a novel approach to transform these large datasets into user-friendly chord diagrams using R. This visualization process is straightforward, simple to implement, and accessible to inexperienced users that have never used R before. Combining CGPD-tetramers into a single chord diagram helps identify potential key chemicals, genes, phenotypes, and diseases. This visualization allows users to more readily analyze computational datasets that can fill the exposure knowledge gaps in the environmental health continuum.\",\"PeriodicalId\":73111,\"journal\":{\"name\":\"Frontiers in toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ftox.2024.1437884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ftox.2024.1437884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在环境健康领域,化学品暴露与不良终点之间的具体分子机制往往是未知的,这反映了知识上的差距。在公共比较毒物基因组学数据库(CTD; https://ctdbase.org/)中,我们整合了 CTD 中人工编辑的、基于文献的相互作用,计算出四个单位的信息块,作为潜在的逐步分子机制,即 "CGPD-tetramers",其中一种化学品与一种基因产物相互作用,引发一种表型,而这种表型可以与疾病联系起来。这些计算得出的数据集可以用来填补空白,提供可检验的机理信息。用户可以在 CTD 上为感兴趣的化学物质、基因、表型和/或疾病的任何组合生成 CGPD-四聚体;但是,这种查询通常会生成数千个 CGPD-四聚体。在这里,我们介绍了一种使用 R 将这些大型数据集转化为用户友好和弦图的新方法。这种可视化过程简单明了、易于实现,而且从未使用过 R 的无经验用户也可以使用。将 CGPD 四聚体组合成单个弦图有助于识别潜在的关键化学物质、基因、表型和疾病。这种可视化方法可以让用户更轻松地分析计算数据集,从而填补环境健康连续体中暴露知识的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transforming environmental health datasets from the comparative toxicogenomics database into chord diagrams to visualize molecular mechanisms
In environmental health, the specific molecular mechanisms connecting a chemical exposure to an adverse endpoint are often unknown, reflecting knowledge gaps. At the public Comparative Toxicogenomics Database (CTD; https://ctdbase.org/), we integrate manually curated, literature-based interactions from CTD to compute four-unit blocks of information organized as a potential step-wise molecular mechanism, known as “CGPD-tetramers,” wherein a chemical interacts with a gene product to trigger a phenotype which can be linked to a disease. These computationally derived datasets can be used to fill the gaps and offer testable mechanistic information. Users can generate CGPD-tetramers for any combination of chemical, gene, phenotype, and/or disease of interest at CTD; however, such queries typically result in the generation of thousands of CGPD-tetramers. Here, we describe a novel approach to transform these large datasets into user-friendly chord diagrams using R. This visualization process is straightforward, simple to implement, and accessible to inexperienced users that have never used R before. Combining CGPD-tetramers into a single chord diagram helps identify potential key chemicals, genes, phenotypes, and diseases. This visualization allows users to more readily analyze computational datasets that can fill the exposure knowledge gaps in the environmental health continuum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
A new approach methodology to identify tumorigenic chemicals using short-term exposures and transcript profiling. A systematic review and meta-analysis of the impact of triclosan exposure on human semen quality. Reproductive toxicology: keeping up with our changing world. Microplastics and nanoplastics in cardiovascular disease-a narrative review with worrying links. Ergot alkaloid control in biotechnological processes and pharmaceuticals (a mini review).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1