评估作为柠檬酸生产底物的废弃葵花籽油:Triton X-100 的抑制作用

Bilge Sayın, A. Bozkurt, G. Kaban
{"title":"评估作为柠檬酸生产底物的废弃葵花籽油:Triton X-100 的抑制作用","authors":"Bilge Sayın, A. Bozkurt, G. Kaban","doi":"10.3390/fermentation10070374","DOIUrl":null,"url":null,"abstract":"In this study, waste sunflower oils were evaluated as substrates for citric acid (CA) production by Yarrowia lipolytica IFP29 (ATCC 20460). This strain was selected based on its capacity to produce organic acids in a selective medium. Attempts were made to optimize the process using the Taguchi statistical method in terms of the oil polarity, oil concentration, fermentation time, and Triton X-100 concentration. The results indicated that Y. lipolytica IFP29 utilized waste sunflower oil as a substrate and produced a maximum CA of 32.17 ± 1.44 g/L. Additionally, Triton X-100 inhibited the production of CA. For this reason, this process could not be optimized. These results were obtained by periodically adjusting the pH with NaOH during the fermentation period. On the other hand, a new experimental design was created without Triton X-100. As a buffering agent, 2-morpholinoethanesulfonic acid monohydrate (MES) was used to prevent a drop in pH; the maximum concentration of CA was found to be 20.31 ± 2.76. The optimum conditions were as follows: 90 g/L of waste sunflower oil with a polarity of 16 and 12 days of fermentation. According to the analysis of variance results, the effects of factors other than polarity on CA production were found to be significant (p < 0.05).","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"37 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing Waste Sunflower Oil as a Substrate for Citric Acid Production: The Inhibitory Effect of Triton X-100\",\"authors\":\"Bilge Sayın, A. Bozkurt, G. Kaban\",\"doi\":\"10.3390/fermentation10070374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, waste sunflower oils were evaluated as substrates for citric acid (CA) production by Yarrowia lipolytica IFP29 (ATCC 20460). This strain was selected based on its capacity to produce organic acids in a selective medium. Attempts were made to optimize the process using the Taguchi statistical method in terms of the oil polarity, oil concentration, fermentation time, and Triton X-100 concentration. The results indicated that Y. lipolytica IFP29 utilized waste sunflower oil as a substrate and produced a maximum CA of 32.17 ± 1.44 g/L. Additionally, Triton X-100 inhibited the production of CA. For this reason, this process could not be optimized. These results were obtained by periodically adjusting the pH with NaOH during the fermentation period. On the other hand, a new experimental design was created without Triton X-100. As a buffering agent, 2-morpholinoethanesulfonic acid monohydrate (MES) was used to prevent a drop in pH; the maximum concentration of CA was found to be 20.31 ± 2.76. The optimum conditions were as follows: 90 g/L of waste sunflower oil with a polarity of 16 and 12 days of fermentation. According to the analysis of variance results, the effects of factors other than polarity on CA production were found to be significant (p < 0.05).\",\"PeriodicalId\":12379,\"journal\":{\"name\":\"Fermentation\",\"volume\":\"37 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation10070374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10070374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了废葵花籽油作为底物,供脂肪分解亚罗诺氏菌 IFP29(ATCC 20460)生产柠檬酸(CA)。选择该菌株的依据是其在选择性培养基中生产有机酸的能力。尝试使用田口统计法从油的极性、油的浓度、发酵时间和 Triton X-100 浓度等方面对工艺进行优化。结果表明,Y. lipolytica IFP29 利用废葵花籽油作为底物,产生的最大 CA 为 32.17 ± 1.44 克/升。此外,Triton X-100 也抑制了 CA 的产生。因此,无法对这一过程进行优化。这些结果是通过在发酵期间定期用 NaOH 调节 pH 值获得的。另一方面,在不使用 Triton X-100 的情况下进行了新的实验设计。使用一水 2-吗啉乙磺酸(MES)作为缓冲剂,以防止 pH 值下降;发现 CA 的最大浓度为 20.31 ± 2.76。最佳条件如下90 克/升极性为 16 的废葵花籽油,发酵 12 天。根据方差分析结果,极性以外的因素对 CA 产量的影响显著(p < 0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing Waste Sunflower Oil as a Substrate for Citric Acid Production: The Inhibitory Effect of Triton X-100
In this study, waste sunflower oils were evaluated as substrates for citric acid (CA) production by Yarrowia lipolytica IFP29 (ATCC 20460). This strain was selected based on its capacity to produce organic acids in a selective medium. Attempts were made to optimize the process using the Taguchi statistical method in terms of the oil polarity, oil concentration, fermentation time, and Triton X-100 concentration. The results indicated that Y. lipolytica IFP29 utilized waste sunflower oil as a substrate and produced a maximum CA of 32.17 ± 1.44 g/L. Additionally, Triton X-100 inhibited the production of CA. For this reason, this process could not be optimized. These results were obtained by periodically adjusting the pH with NaOH during the fermentation period. On the other hand, a new experimental design was created without Triton X-100. As a buffering agent, 2-morpholinoethanesulfonic acid monohydrate (MES) was used to prevent a drop in pH; the maximum concentration of CA was found to be 20.31 ± 2.76. The optimum conditions were as follows: 90 g/L of waste sunflower oil with a polarity of 16 and 12 days of fermentation. According to the analysis of variance results, the effects of factors other than polarity on CA production were found to be significant (p < 0.05).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primary Metabolites and Microbial Diversity in Commercial Kombucha Products Black Tea Kombucha Consumption: Effect on Cardiometabolic Parameters and Diet Quality of Individuals with and without Obesity Chia Seed Mucilage as a Functional Ingredient to Improve Quality of Goat Milk Yoghurt: Effects on Rheology, Texture, Microstructure and Sensory Properties Biohydrogen Production from Methane-Derived Biomass of Methanotroph and Microalgae by Clostridium Characterization of the Gamma-Aminobutyric Acid (GABA) Biosynthetic Gene Cluster in High GABA-Producing Enterococcus avium G-15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1