研究旋转盘上的对流传热和稳定性:新型实验方法与热建模

Fluids Pub Date : 2024-07-22 DOI:10.3390/fluids9070167
Yusuf Çati, S. Wiesche, Mesut Düzgün
{"title":"研究旋转盘上的对流传热和稳定性:新型实验方法与热建模","authors":"Yusuf Çati, S. Wiesche, Mesut Düzgün","doi":"10.3390/fluids9070167","DOIUrl":null,"url":null,"abstract":"Experimental and numerical investigations are conducted on a rotating disk from the perspective of convective heat transfer to understand the effect of heating on the stability of flow. A non-invasive approach with a thermal camera is employed to determine local Nusselt numbers for different rotational rates and perturbation parameters, i.e., the strength of the heat transfer. A novel transient temperature data extraction over the disk radius and an evaluation method are developed and applied for the first time for the air on a rotating disk. The evaluation method utilizes the lumped capacitance approach with a constant heat flux input. Nusselt number distributions from this experimental study show that there is a good agreement with the previous experimental correlations and linear stability analysis on the subject. A significant result of this approach is that by using the experimental setup and developed approach, it is possible to qualitatively show that instability in the flow starts earlier, i.e., an earlier departure from laminar behavior is observed at lower rotational Reynolds numbers with an increasing perturbation parameter, which is due to the strength of heating. Two experimental setups are modeled and simulated using a validated in-house Python code, featuring a three-dimensional thermal model of the disk. The thermal code was developed for the rotating disks and brake disks with a simplified geometry. Experimentally evaluated heat transfer coefficients are implemented and used as convective boundary conditions in the thermal code. Radial temperature distributions are compared with the experimental data, and there is good agreement between the experiment and the model. The model was used to evaluate the effect of radial conduction, which is neglected when using the lumped capacitance approach to determine heat transfer coefficients. It was observed that the radial conduction has a slight effect. The methodology and approach used in this experimental study, combined with the numerical model, can be used for further investigations on the subject.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"33 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Convective Heat Transfer and Stability on a Rotating Disk: A Novel Experimental Method and Thermal Modeling\",\"authors\":\"Yusuf Çati, S. Wiesche, Mesut Düzgün\",\"doi\":\"10.3390/fluids9070167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental and numerical investigations are conducted on a rotating disk from the perspective of convective heat transfer to understand the effect of heating on the stability of flow. A non-invasive approach with a thermal camera is employed to determine local Nusselt numbers for different rotational rates and perturbation parameters, i.e., the strength of the heat transfer. A novel transient temperature data extraction over the disk radius and an evaluation method are developed and applied for the first time for the air on a rotating disk. The evaluation method utilizes the lumped capacitance approach with a constant heat flux input. Nusselt number distributions from this experimental study show that there is a good agreement with the previous experimental correlations and linear stability analysis on the subject. A significant result of this approach is that by using the experimental setup and developed approach, it is possible to qualitatively show that instability in the flow starts earlier, i.e., an earlier departure from laminar behavior is observed at lower rotational Reynolds numbers with an increasing perturbation parameter, which is due to the strength of heating. Two experimental setups are modeled and simulated using a validated in-house Python code, featuring a three-dimensional thermal model of the disk. The thermal code was developed for the rotating disks and brake disks with a simplified geometry. Experimentally evaluated heat transfer coefficients are implemented and used as convective boundary conditions in the thermal code. Radial temperature distributions are compared with the experimental data, and there is good agreement between the experiment and the model. The model was used to evaluate the effect of radial conduction, which is neglected when using the lumped capacitance approach to determine heat transfer coefficients. It was observed that the radial conduction has a slight effect. The methodology and approach used in this experimental study, combined with the numerical model, can be used for further investigations on the subject.\",\"PeriodicalId\":510749,\"journal\":{\"name\":\"Fluids\",\"volume\":\"33 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fluids9070167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9070167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从对流传热的角度对旋转圆盘进行了实验和数值研究,以了解加热对流动稳定性的影响。利用热像仪的非侵入式方法确定了不同旋转速率和扰动参数(即热传递强度)下的局部努塞尔特数。首次针对旋转圆盘上的空气开发并应用了一种新颖的圆盘半径瞬态温度数据提取和评估方法。评估方法采用了恒定热通量输入的叠加电容法。实验研究得出的努塞尔特数分布表明,与之前的实验相关性和线性稳定性分析结果非常吻合。这种方法的一个重要结果是,通过使用实验装置和开发的方法,可以定性地显示流动中的不稳定性开始得更早,即在较低的旋转雷诺数下,随着扰动参数的增加,会更早地偏离层流行为,这是由于加热的强度造成的。使用经过验证的内部 Python 代码对两个实验设置进行了建模和模拟,该代码具有圆盘的三维热模型。该热学代码是针对具有简化几何形状的旋转盘和制动盘开发的。热代码中采用了实验评估的传热系数,并将其用作对流边界条件。径向温度分布与实验数据进行了比较,实验与模型之间的一致性很好。该模型用于评估径向传导的影响,在使用叠加电容法确定传热系数时,径向传导被忽略了。据观察,径向传导的影响很小。本实验研究中使用的方法和途径与数值模型相结合,可用于对该主题的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Convective Heat Transfer and Stability on a Rotating Disk: A Novel Experimental Method and Thermal Modeling
Experimental and numerical investigations are conducted on a rotating disk from the perspective of convective heat transfer to understand the effect of heating on the stability of flow. A non-invasive approach with a thermal camera is employed to determine local Nusselt numbers for different rotational rates and perturbation parameters, i.e., the strength of the heat transfer. A novel transient temperature data extraction over the disk radius and an evaluation method are developed and applied for the first time for the air on a rotating disk. The evaluation method utilizes the lumped capacitance approach with a constant heat flux input. Nusselt number distributions from this experimental study show that there is a good agreement with the previous experimental correlations and linear stability analysis on the subject. A significant result of this approach is that by using the experimental setup and developed approach, it is possible to qualitatively show that instability in the flow starts earlier, i.e., an earlier departure from laminar behavior is observed at lower rotational Reynolds numbers with an increasing perturbation parameter, which is due to the strength of heating. Two experimental setups are modeled and simulated using a validated in-house Python code, featuring a three-dimensional thermal model of the disk. The thermal code was developed for the rotating disks and brake disks with a simplified geometry. Experimentally evaluated heat transfer coefficients are implemented and used as convective boundary conditions in the thermal code. Radial temperature distributions are compared with the experimental data, and there is good agreement between the experiment and the model. The model was used to evaluate the effect of radial conduction, which is neglected when using the lumped capacitance approach to determine heat transfer coefficients. It was observed that the radial conduction has a slight effect. The methodology and approach used in this experimental study, combined with the numerical model, can be used for further investigations on the subject.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Aerodynamic Shape and Aero-Structural Optimization: Applications from Ahmed Body to NACA 0012 Airfoil and Wind Turbine Blades Flowfield and Noise Dynamics of Supersonic Rectangular Impinging Jets: Major versus Minor Axis Orientations Rim Driven Thruster as Innovative Propulsion Element for Dual Phase Flows in Plug Flow Reactors Investigation of Convective Heat Transfer and Stability on a Rotating Disk: A Novel Experimental Method and Thermal Modeling Visualization and Quantification of Facemask Leakage Flows and Interpersonal Transmission with Varying Face Coverings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1