MosViT:基于激光雷达点云的移动物体分割视觉变换器

Chunyun Ma, Xiaojun Shi, Yingxin Wang, Shuai Song, Zhen Pan, Jiaxiang Hu
{"title":"MosViT:基于激光雷达点云的移动物体分割视觉变换器","authors":"Chunyun Ma, Xiaojun Shi, Yingxin Wang, Shuai Song, Zhen Pan, Jiaxiang Hu","doi":"10.1088/1361-6501/ad6626","DOIUrl":null,"url":null,"abstract":"\n Moving object segmentation is fundamental for various downstream tasks in robotics and autonomous driving, providing crucial information for them. Effectively extracting spatial-temporal information from consecutive frames and addressing the scarcity of dataset is paramount for learning-based 3D LiDAR Moving Object Segmentation (LIDAR-MOS). In this work, we propose a novel deep neural network based on Vision Transformers (ViTs) to tackle this problem. We first validate the feasibility of Transformer networks for this task, offering an alternative to CNNs. Specifically, we utilize a dual-branch structure based on range-image data to extract spatial-temporal information from consecutive frames and fuse it using a motion-guided attention mechanism. Furthermore, we employ the ViT as the backbone, keeping its architecture unchanged from what is used for RGB images. This enables us to leverage pre-trained models from RGB images to improve results, addressing the issue of limited LIDAR point cloud data, which is cheaper compared to acquiring and annotating point cloud data. We validate the effectiveness of our approach on the LIDAR-MOS benchmark of SemanticKitti and achieve comparable results to methods that use CNNs on range image data. The source code and trained models are available at https://github.com/mafangniu/MOSViT.git.","PeriodicalId":510602,"journal":{"name":"Measurement Science and Technology","volume":"40 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MosViT: Towards Vision Transformers for moving object segmentation based on Lidar point cloud\",\"authors\":\"Chunyun Ma, Xiaojun Shi, Yingxin Wang, Shuai Song, Zhen Pan, Jiaxiang Hu\",\"doi\":\"10.1088/1361-6501/ad6626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Moving object segmentation is fundamental for various downstream tasks in robotics and autonomous driving, providing crucial information for them. Effectively extracting spatial-temporal information from consecutive frames and addressing the scarcity of dataset is paramount for learning-based 3D LiDAR Moving Object Segmentation (LIDAR-MOS). In this work, we propose a novel deep neural network based on Vision Transformers (ViTs) to tackle this problem. We first validate the feasibility of Transformer networks for this task, offering an alternative to CNNs. Specifically, we utilize a dual-branch structure based on range-image data to extract spatial-temporal information from consecutive frames and fuse it using a motion-guided attention mechanism. Furthermore, we employ the ViT as the backbone, keeping its architecture unchanged from what is used for RGB images. This enables us to leverage pre-trained models from RGB images to improve results, addressing the issue of limited LIDAR point cloud data, which is cheaper compared to acquiring and annotating point cloud data. We validate the effectiveness of our approach on the LIDAR-MOS benchmark of SemanticKitti and achieve comparable results to methods that use CNNs on range image data. The source code and trained models are available at https://github.com/mafangniu/MOSViT.git.\",\"PeriodicalId\":510602,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":\"40 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad6626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad6626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

移动物体分割是机器人和自动驾驶领域各种下游任务的基础,可为这些任务提供关键信息。对于基于学习的三维激光雷达移动物体分割(LIDAR-MOS)来说,从连续帧中有效提取时空信息并解决数据集稀缺的问题至关重要。在这项工作中,我们提出了一种基于视觉变换器(ViTs)的新型深度神经网络来解决这一问题。我们首先验证了变换器网络在这一任务中的可行性,为 CNN 提供了一种替代方案。具体来说,我们利用基于范围图像数据的双分支结构,从连续帧中提取空间-时间信息,并利用运动引导注意机制将其融合。此外,我们采用 ViT 作为骨干,其架构与 RGB 图像保持不变。这使我们能够利用 RGB 图像中预先训练好的模型来改善结果,从而解决激光雷达点云数据有限的问题,与获取和注释点云数据相比,激光雷达点云数据的成本更低。我们在 SemanticKitti 的激光雷达-MOS 基准上验证了我们方法的有效性,并取得了与在测距图像数据上使用 CNN 的方法相当的结果。源代码和训练好的模型可在 https://github.com/mafangniu/MOSViT.git 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MosViT: Towards Vision Transformers for moving object segmentation based on Lidar point cloud
Moving object segmentation is fundamental for various downstream tasks in robotics and autonomous driving, providing crucial information for them. Effectively extracting spatial-temporal information from consecutive frames and addressing the scarcity of dataset is paramount for learning-based 3D LiDAR Moving Object Segmentation (LIDAR-MOS). In this work, we propose a novel deep neural network based on Vision Transformers (ViTs) to tackle this problem. We first validate the feasibility of Transformer networks for this task, offering an alternative to CNNs. Specifically, we utilize a dual-branch structure based on range-image data to extract spatial-temporal information from consecutive frames and fuse it using a motion-guided attention mechanism. Furthermore, we employ the ViT as the backbone, keeping its architecture unchanged from what is used for RGB images. This enables us to leverage pre-trained models from RGB images to improve results, addressing the issue of limited LIDAR point cloud data, which is cheaper compared to acquiring and annotating point cloud data. We validate the effectiveness of our approach on the LIDAR-MOS benchmark of SemanticKitti and achieve comparable results to methods that use CNNs on range image data. The source code and trained models are available at https://github.com/mafangniu/MOSViT.git.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Experimental Apparatus to Study the Adsorption of Water on Proxies for Spent Nuclear Fuel Surfaces A Fine-Tuning Prototypical Network for Few-shot Cross-domain Fault Diagnosis Application of wavelet dynamic joint adaptive network guided by pseudo-label alignment mechanism in gearbox fault diagnosis Calculation of the inverse involute function and application to measurement over pins Machine learning classification of permeable conducting spheres in air and seawater using electromagnetic pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1