{"title":"煅烧天然沸石对水泥基材料水化动力学和收缩的影响","authors":"M. S. Islam, Benjamin J. Mohr","doi":"10.1520/acem20220119","DOIUrl":null,"url":null,"abstract":"\n Previous literature has provided contradictory results, so we present the current investigation to provide additional information to assess the suitability of using soak calcination as a pretreatment method to increase the performance of calcined zeolite when used as the supplementary cementitious material. In this study, natural clinoptilolite zeolite was calcined for three hours at 200°C, 400°C, 600°C, 800°C, and 1,000°C, and the effects of calcination on different physical and chemical properties were observed using a range of experimental tests. The impacts of calcined zeolite were investigated in the hydrated system with the replacement of portland cement up to 20 % by mass on hydration kinetics (i.e., heat of hydration, setting time, chemical shrinkage, degree of hydration), drying shrinkage, and compressive strength. Results revealed that calcination minorly decreased the crystallinity, particle size, and peak pore size of the zeolite, leading to a slightly increased external specific surface area, whereas it increased the rate of moisture absorption and pH of zeolite particles. In the hydrated cementitious system, calcined zeolite reduced the workability and heat of hydration and retarded the initial setting time. The calcined zeolite particles absorbed a part of the water from the fresh mixture and expanded volumetrically, which led to a negative volume of chemical shrinkage up to the final setting time and increased the drying shrinkage. As the dosages of calcined zeolite increased, the compressive strength substantially decreased because of the lower degree of hydration. Overall, soak calcination pretreatment decreased the reactivity of clinoptilolite zeolite particles and impacted the performance of calcined zeolite in the blended system.","PeriodicalId":51766,"journal":{"name":"Advances in Civil Engineering Materials","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Calcined Natural Clinoptilolite Zeolite on Hydration Kinetics and Shrinkage of Cementitious Materials\",\"authors\":\"M. S. Islam, Benjamin J. Mohr\",\"doi\":\"10.1520/acem20220119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Previous literature has provided contradictory results, so we present the current investigation to provide additional information to assess the suitability of using soak calcination as a pretreatment method to increase the performance of calcined zeolite when used as the supplementary cementitious material. In this study, natural clinoptilolite zeolite was calcined for three hours at 200°C, 400°C, 600°C, 800°C, and 1,000°C, and the effects of calcination on different physical and chemical properties were observed using a range of experimental tests. The impacts of calcined zeolite were investigated in the hydrated system with the replacement of portland cement up to 20 % by mass on hydration kinetics (i.e., heat of hydration, setting time, chemical shrinkage, degree of hydration), drying shrinkage, and compressive strength. Results revealed that calcination minorly decreased the crystallinity, particle size, and peak pore size of the zeolite, leading to a slightly increased external specific surface area, whereas it increased the rate of moisture absorption and pH of zeolite particles. In the hydrated cementitious system, calcined zeolite reduced the workability and heat of hydration and retarded the initial setting time. The calcined zeolite particles absorbed a part of the water from the fresh mixture and expanded volumetrically, which led to a negative volume of chemical shrinkage up to the final setting time and increased the drying shrinkage. As the dosages of calcined zeolite increased, the compressive strength substantially decreased because of the lower degree of hydration. Overall, soak calcination pretreatment decreased the reactivity of clinoptilolite zeolite particles and impacted the performance of calcined zeolite in the blended system.\",\"PeriodicalId\":51766,\"journal\":{\"name\":\"Advances in Civil Engineering Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Civil Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/acem20220119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/acem20220119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of Calcined Natural Clinoptilolite Zeolite on Hydration Kinetics and Shrinkage of Cementitious Materials
Previous literature has provided contradictory results, so we present the current investigation to provide additional information to assess the suitability of using soak calcination as a pretreatment method to increase the performance of calcined zeolite when used as the supplementary cementitious material. In this study, natural clinoptilolite zeolite was calcined for three hours at 200°C, 400°C, 600°C, 800°C, and 1,000°C, and the effects of calcination on different physical and chemical properties were observed using a range of experimental tests. The impacts of calcined zeolite were investigated in the hydrated system with the replacement of portland cement up to 20 % by mass on hydration kinetics (i.e., heat of hydration, setting time, chemical shrinkage, degree of hydration), drying shrinkage, and compressive strength. Results revealed that calcination minorly decreased the crystallinity, particle size, and peak pore size of the zeolite, leading to a slightly increased external specific surface area, whereas it increased the rate of moisture absorption and pH of zeolite particles. In the hydrated cementitious system, calcined zeolite reduced the workability and heat of hydration and retarded the initial setting time. The calcined zeolite particles absorbed a part of the water from the fresh mixture and expanded volumetrically, which led to a negative volume of chemical shrinkage up to the final setting time and increased the drying shrinkage. As the dosages of calcined zeolite increased, the compressive strength substantially decreased because of the lower degree of hydration. Overall, soak calcination pretreatment decreased the reactivity of clinoptilolite zeolite particles and impacted the performance of calcined zeolite in the blended system.
期刊介绍:
The journal is published continuously in one annual issue online. Papers are published online as they are approved and edited. Special Issues may also be published on specific topics of interest to our readers. Advances in Civil Engineering Materials provides high-quality, papers on a broad range of topics relating to the properties and performance of civil engineering materials. Materials Covered: (but not limited to) Concrete, Asphalt, Steel, Polymers and polymeric composites, Wood, Other materials used in civil engineering applications (for example, pavements, bridges, and buildings, including nonstructural building elements such as insulation and roofing), and environmental systems (including water treatment). Core Topics Covered: Characterization, such as chemical composition, nanostructure, and microstructure, Physical properties, such as strength, stiffness, and fracture behavior, Constructability, such as construction methods, quality control/assurance, life cycle analysis, and sustainability, Durability. Papers may present experimental or modeling studies based on laboratory or field observations. Papers relating to sustainability of engineering materials or to the impact of materials on sustainability of engineering structures are especially encouraged.