案例教程,介绍如何结合地球物理、岩石物理和地质制约因素,生成安大略省马西森研究区的现实地质模型

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geophysics Pub Date : 2024-07-21 DOI:10.1190/geo2023-0522.1
F. Della Justina, Richard S. Smith, R. Vayavur
{"title":"案例教程,介绍如何结合地球物理、岩石物理和地质制约因素,生成安大略省马西森研究区的现实地质模型","authors":"F. Della Justina, Richard S. Smith, R. Vayavur","doi":"10.1190/geo2023-0522.1","DOIUrl":null,"url":null,"abstract":"The model that is used to explain potential-field data is highly dependent on the constraints applied in the modelling process. Many studies demonstrate the necessity of constraining gravity and magnetic models. However, typically they do not demonstrate the individual enhancements that come as a consequence of integrating each constraint into the geophysical model. In this paper, we show that when there are no constraints, it is possible to find an inverse model that is consistent with gravity data, but the model is unrealistic, as one sedimentary basin is too deep. Adding a depth weighting constraint can ensure the depth is correct, but all other features have the same depth, which is unrealistic. Including densities from a density compilation makes the densities at surface realistic, but the dips are all close to vertical and the thicknesses are similar, which is unrealistic. In this case, the inversion is believed to have found a local minimum close to the starting model. Reflection seismic data was used to constrain a two-dimensional (2D) modeling exercise (on multiple profiles) to determine the geometry of one sedimentary sub-basin. These 2D models were then combined to build a realistic three-dimensional (3D) starting model. An inversion from this model fixed the densities of each lithology, but allowed the thicknesses of the layers to vary. The resulting model was realistic, with the dips and thicknesses away from the seismic constraints being consistent with geological expectations. Although the fit to the data was much better than the previous model, it was poorer than hoped. If the densities were then allowed to vary within a realistic range of values, the fit could be improved so that both the fit to the data and the geologic model are realistic.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A case-history tutorial describing the incorporation of geophysical, petrophysical and geological constraints to generate realistic geological models of the Matheson Study Area, Ontario\",\"authors\":\"F. Della Justina, Richard S. Smith, R. Vayavur\",\"doi\":\"10.1190/geo2023-0522.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The model that is used to explain potential-field data is highly dependent on the constraints applied in the modelling process. Many studies demonstrate the necessity of constraining gravity and magnetic models. However, typically they do not demonstrate the individual enhancements that come as a consequence of integrating each constraint into the geophysical model. In this paper, we show that when there are no constraints, it is possible to find an inverse model that is consistent with gravity data, but the model is unrealistic, as one sedimentary basin is too deep. Adding a depth weighting constraint can ensure the depth is correct, but all other features have the same depth, which is unrealistic. Including densities from a density compilation makes the densities at surface realistic, but the dips are all close to vertical and the thicknesses are similar, which is unrealistic. In this case, the inversion is believed to have found a local minimum close to the starting model. Reflection seismic data was used to constrain a two-dimensional (2D) modeling exercise (on multiple profiles) to determine the geometry of one sedimentary sub-basin. These 2D models were then combined to build a realistic three-dimensional (3D) starting model. An inversion from this model fixed the densities of each lithology, but allowed the thicknesses of the layers to vary. The resulting model was realistic, with the dips and thicknesses away from the seismic constraints being consistent with geological expectations. Although the fit to the data was much better than the previous model, it was poorer than hoped. If the densities were then allowed to vary within a realistic range of values, the fit could be improved so that both the fit to the data and the geologic model are realistic.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0522.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0522.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

用于解释势场数据的模型在很大程度上取决于建模过程中应用的约束条件。许多研究表明,有必要对重力和磁力模型进行约束。然而,这些研究通常并没有证明将每个约束条件整合到地球物理模型中会产生怎样的增强效果。在本文中,我们展示了在没有约束条件的情况下,有可能找到一个与重力数据一致的反演模型,但该模型是不现实的,因为一个沉积盆地太深了。添加深度加权约束可以确保深度正确,但所有其他地物的深度都相同,这是不现实的。加入密度汇编中的密度可使地表密度符合实际情况,但倾角都接近垂直,厚度也相似,这是不现实的。在这种情况下,反演被认为找到了接近起始模型的局部最小值。反射地震数据被用来约束二维(2D)建模工作(在多个剖面上),以确定一个沉积亚盆地的几何形状。然后将这些二维模型结合起来,建立一个逼真的三维(3D)起始模型。该模型的反演固定了每种岩性的密度,但允许岩层厚度变化。由此产生的模型是真实的,其倾角和厚度与地震约束条件相符,符合地质预期。虽然与数据的拟合比之前的模型要好得多,但比预期的要差。如果允许密度在现实的数值范围内变化,就可以改善拟合效果,使数据拟合和地质模型都符合实际情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A case-history tutorial describing the incorporation of geophysical, petrophysical and geological constraints to generate realistic geological models of the Matheson Study Area, Ontario
The model that is used to explain potential-field data is highly dependent on the constraints applied in the modelling process. Many studies demonstrate the necessity of constraining gravity and magnetic models. However, typically they do not demonstrate the individual enhancements that come as a consequence of integrating each constraint into the geophysical model. In this paper, we show that when there are no constraints, it is possible to find an inverse model that is consistent with gravity data, but the model is unrealistic, as one sedimentary basin is too deep. Adding a depth weighting constraint can ensure the depth is correct, but all other features have the same depth, which is unrealistic. Including densities from a density compilation makes the densities at surface realistic, but the dips are all close to vertical and the thicknesses are similar, which is unrealistic. In this case, the inversion is believed to have found a local minimum close to the starting model. Reflection seismic data was used to constrain a two-dimensional (2D) modeling exercise (on multiple profiles) to determine the geometry of one sedimentary sub-basin. These 2D models were then combined to build a realistic three-dimensional (3D) starting model. An inversion from this model fixed the densities of each lithology, but allowed the thicknesses of the layers to vary. The resulting model was realistic, with the dips and thicknesses away from the seismic constraints being consistent with geological expectations. Although the fit to the data was much better than the previous model, it was poorer than hoped. If the densities were then allowed to vary within a realistic range of values, the fit could be improved so that both the fit to the data and the geologic model are realistic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
期刊最新文献
Velocity model-based adapted meshes using optimal transport An Efficient Cascadic Multigrid Method with Regularization Technique for 3-D Electromagnetic Finite-Element Anisotropic Modelling Noise Attenuation in Distributed Acoustic Sensing Data Using a Guided Unsupervised Deep Learning Network Non-stationary adaptive S-wave suppression of ocean bottom node data Method and application of sand body thickness prediction based on virtual sample-machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1