自动歌词生成的数据驱动方法

Jeyadev Needhi, D. Kk, Vishnu G, Ram Prasath G
{"title":"自动歌词生成的数据驱动方法","authors":"Jeyadev Needhi, D. Kk, Vishnu G, Ram Prasath G","doi":"10.18535/ijecs/v13i07.4839","DOIUrl":null,"url":null,"abstract":"This project leverages Recurrent Neural Networks(RNNs) to generate coherent and contextually relevant songlyrics. The methodology includes extensive text preprocessing anddataset creation, followed by the construction of a robust modelfeaturing Embedding, Gated Recurrent Unit (GRU), Dense, andDropout layers. The model is compiled and trained using theAdam optimizer, with checkpointing to monitor and optimize thetraining process. Upon successful training on a comprehensivelyrics dataset, the model is thoroughly evaluated and fine-tunedto enhance performance. Finally, the model generates new lyricsfrom a given seed, showcasing its ability to learn intricatelinguistic patterns and structures, thereby offering a powerfultool for creative and original lyric composition.","PeriodicalId":231371,"journal":{"name":"International Journal of Engineering and Computer Science","volume":"51 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Approach to Automated Lyric Generation\",\"authors\":\"Jeyadev Needhi, D. Kk, Vishnu G, Ram Prasath G\",\"doi\":\"10.18535/ijecs/v13i07.4839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project leverages Recurrent Neural Networks(RNNs) to generate coherent and contextually relevant songlyrics. The methodology includes extensive text preprocessing anddataset creation, followed by the construction of a robust modelfeaturing Embedding, Gated Recurrent Unit (GRU), Dense, andDropout layers. The model is compiled and trained using theAdam optimizer, with checkpointing to monitor and optimize thetraining process. Upon successful training on a comprehensivelyrics dataset, the model is thoroughly evaluated and fine-tunedto enhance performance. Finally, the model generates new lyricsfrom a given seed, showcasing its ability to learn intricatelinguistic patterns and structures, thereby offering a powerfultool for creative and original lyric composition.\",\"PeriodicalId\":231371,\"journal\":{\"name\":\"International Journal of Engineering and Computer Science\",\"volume\":\"51 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18535/ijecs/v13i07.4839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/ijecs/v13i07.4839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该项目利用循环神经网络(RNN)生成连贯且与上下文相关的歌词。该方法包括广泛的文本预处理和数据集创建,然后构建一个包含嵌入层、门控递归单元(GRU)、密集层和剔除层的稳健模型。该模型使用亚当优化器进行编译和训练,并通过检查点监控和优化训练过程。在综合数据集上训练成功后,对模型进行全面评估和微调,以提高性能。最后,该模型从给定的种子中生成新歌词,展示了其学习复杂语言模式和结构的能力,从而为创造性和原创性歌词创作提供了强有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Approach to Automated Lyric Generation
This project leverages Recurrent Neural Networks(RNNs) to generate coherent and contextually relevant songlyrics. The methodology includes extensive text preprocessing anddataset creation, followed by the construction of a robust modelfeaturing Embedding, Gated Recurrent Unit (GRU), Dense, andDropout layers. The model is compiled and trained using theAdam optimizer, with checkpointing to monitor and optimize thetraining process. Upon successful training on a comprehensivelyrics dataset, the model is thoroughly evaluated and fine-tunedto enhance performance. Finally, the model generates new lyricsfrom a given seed, showcasing its ability to learn intricatelinguistic patterns and structures, thereby offering a powerfultool for creative and original lyric composition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A FRAMEWORK FOR MANAGEMENT OF LEAKS AND EQUIPMENT FAILURE IN OIL WELLS Data-Driven Approach to Automated Lyric Generation Predictive Analytics for Demand Forecasting: A deep Learning-based Decision Support System A Model for Detection of Malwares on Edge Devices ENHANCE DOCUMENT VALIDATION UIPATH POWERED SIGNATURE VERIFICATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1