Marco P. Colín-García, Misael Ruiz-Veloz, Luis Polo-Parada, Rosalba Castañeda-Guzmán, Gerardo Gutiérrez-Juárez, A. Pérez-Pacheco, R. G. Ramírez-Chavarría
{"title":"使用两种波长对牙科组织进行光声图像分析:对比研究","authors":"Marco P. Colín-García, Misael Ruiz-Veloz, Luis Polo-Parada, Rosalba Castañeda-Guzmán, Gerardo Gutiérrez-Juárez, A. Pérez-Pacheco, R. G. Ramírez-Chavarría","doi":"10.3390/photonics11070678","DOIUrl":null,"url":null,"abstract":"This work compares photoacoustic images of a tooth by analyzing the signals generated with wavelengths 532 and 355 nm. This comparison addresses the differences in the optical properties of dental tissue for these wavelengths that affect the resulting photoacoustic images. A pulsed Nd:YAG laser was used to illuminate a complete extracted tooth sample, and 2D photoacoustic images (PAIs) were reconstructed using the single-sensor scanning synthetic aperture focusing technique (SSC-SAFT), which is a suitable method for our experimental system with forward detection mode. Signal comparison was conducted using sinogram, signal-to-noise ratio (SNR), root mean square (RMS), arrival time, maximum amplitude, and fast Fourier transform (FFT). PAI comparison utilized intensity profile, edge correlation, and image composition tools. The signal analysis revealed that at 532 nm, the signals exhibited longer decay time and a wider distribution of vibration frequencies due to higher laser pulse energy and greater optical penetration depth. Conversely, at 355 nm, the signals had shorter decay times and a lower frequency distribution, which was attributed to lower energy but improved optical absorption, resulting in reconstructed images with better sharpness and contour definition. This study contributes to the advancement of photoacoustic imaging technology in dentistry by providing insights that could optimize signal generation and image reconstruction for dental tissue.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoacoustic Image Analysis of Dental Tissue Using Two Wavelengths: A Comparative Study\",\"authors\":\"Marco P. Colín-García, Misael Ruiz-Veloz, Luis Polo-Parada, Rosalba Castañeda-Guzmán, Gerardo Gutiérrez-Juárez, A. Pérez-Pacheco, R. G. Ramírez-Chavarría\",\"doi\":\"10.3390/photonics11070678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work compares photoacoustic images of a tooth by analyzing the signals generated with wavelengths 532 and 355 nm. This comparison addresses the differences in the optical properties of dental tissue for these wavelengths that affect the resulting photoacoustic images. A pulsed Nd:YAG laser was used to illuminate a complete extracted tooth sample, and 2D photoacoustic images (PAIs) were reconstructed using the single-sensor scanning synthetic aperture focusing technique (SSC-SAFT), which is a suitable method for our experimental system with forward detection mode. Signal comparison was conducted using sinogram, signal-to-noise ratio (SNR), root mean square (RMS), arrival time, maximum amplitude, and fast Fourier transform (FFT). PAI comparison utilized intensity profile, edge correlation, and image composition tools. The signal analysis revealed that at 532 nm, the signals exhibited longer decay time and a wider distribution of vibration frequencies due to higher laser pulse energy and greater optical penetration depth. Conversely, at 355 nm, the signals had shorter decay times and a lower frequency distribution, which was attributed to lower energy but improved optical absorption, resulting in reconstructed images with better sharpness and contour definition. This study contributes to the advancement of photoacoustic imaging technology in dentistry by providing insights that could optimize signal generation and image reconstruction for dental tissue.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11070678\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11070678","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Photoacoustic Image Analysis of Dental Tissue Using Two Wavelengths: A Comparative Study
This work compares photoacoustic images of a tooth by analyzing the signals generated with wavelengths 532 and 355 nm. This comparison addresses the differences in the optical properties of dental tissue for these wavelengths that affect the resulting photoacoustic images. A pulsed Nd:YAG laser was used to illuminate a complete extracted tooth sample, and 2D photoacoustic images (PAIs) were reconstructed using the single-sensor scanning synthetic aperture focusing technique (SSC-SAFT), which is a suitable method for our experimental system with forward detection mode. Signal comparison was conducted using sinogram, signal-to-noise ratio (SNR), root mean square (RMS), arrival time, maximum amplitude, and fast Fourier transform (FFT). PAI comparison utilized intensity profile, edge correlation, and image composition tools. The signal analysis revealed that at 532 nm, the signals exhibited longer decay time and a wider distribution of vibration frequencies due to higher laser pulse energy and greater optical penetration depth. Conversely, at 355 nm, the signals had shorter decay times and a lower frequency distribution, which was attributed to lower energy but improved optical absorption, resulting in reconstructed images with better sharpness and contour definition. This study contributes to the advancement of photoacoustic imaging technology in dentistry by providing insights that could optimize signal generation and image reconstruction for dental tissue.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.