Atousa Aslaminezhad, A. Hidding, Henriette Bier, Giuseppe Calabrese
{"title":"无二氧化碳弹出式建筑的原位与预制 3D 打印注意事项","authors":"Atousa Aslaminezhad, A. Hidding, Henriette Bier, Giuseppe Calabrese","doi":"10.47982/spool.2024.1.05","DOIUrl":null,"url":null,"abstract":"This paper revisits existing pop-up typologies in architecture to identify opportunities for new shelter models to address current housing demands and future habitation requirements on Mars. It presents advancements in design to production methodologies based on computational and robotic techniques to meet current requirements and affordances while integrating sustainable and adaptive functionalities. The main goal is to advance pop-up architecture by developing methods and technologies for rapidly deployable on- and off-Earth habitats while addressing challenges of carbon-free architecture by means of 3D printing. By reviewing state-of-the-art in-situ vs. prefab 3D printing approaches with a particular focus on Human-Robot Interaction (HRI) supported Design-to-Robotic-Production-Assembly and -Operation (D2RPA&O) methods developed at TU Delft material, process, and energy efficiency using locally sourced materials is achieved.","PeriodicalId":52253,"journal":{"name":"Spool","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Situ vs. Prefab 3D Printing Considerations for CO2-free Pop-up Architecture\",\"authors\":\"Atousa Aslaminezhad, A. Hidding, Henriette Bier, Giuseppe Calabrese\",\"doi\":\"10.47982/spool.2024.1.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper revisits existing pop-up typologies in architecture to identify opportunities for new shelter models to address current housing demands and future habitation requirements on Mars. It presents advancements in design to production methodologies based on computational and robotic techniques to meet current requirements and affordances while integrating sustainable and adaptive functionalities. The main goal is to advance pop-up architecture by developing methods and technologies for rapidly deployable on- and off-Earth habitats while addressing challenges of carbon-free architecture by means of 3D printing. By reviewing state-of-the-art in-situ vs. prefab 3D printing approaches with a particular focus on Human-Robot Interaction (HRI) supported Design-to-Robotic-Production-Assembly and -Operation (D2RPA&O) methods developed at TU Delft material, process, and energy efficiency using locally sourced materials is achieved.\",\"PeriodicalId\":52253,\"journal\":{\"name\":\"Spool\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spool\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47982/spool.2024.1.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spool","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47982/spool.2024.1.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
In-Situ vs. Prefab 3D Printing Considerations for CO2-free Pop-up Architecture
This paper revisits existing pop-up typologies in architecture to identify opportunities for new shelter models to address current housing demands and future habitation requirements on Mars. It presents advancements in design to production methodologies based on computational and robotic techniques to meet current requirements and affordances while integrating sustainable and adaptive functionalities. The main goal is to advance pop-up architecture by developing methods and technologies for rapidly deployable on- and off-Earth habitats while addressing challenges of carbon-free architecture by means of 3D printing. By reviewing state-of-the-art in-situ vs. prefab 3D printing approaches with a particular focus on Human-Robot Interaction (HRI) supported Design-to-Robotic-Production-Assembly and -Operation (D2RPA&O) methods developed at TU Delft material, process, and energy efficiency using locally sourced materials is achieved.