Hassen Babaousmail, B. Ayugi, K. T. C. Lim Kam Sian, Herijaona Hani‐Roge Hundilida Randriatsara, Richard Mumo
{"title":"CMIP6 HighResMIP 模型在模拟东非极端降水方面表现如何?","authors":"Hassen Babaousmail, B. Ayugi, K. T. C. Lim Kam Sian, Herijaona Hani‐Roge Hundilida Randriatsara, Richard Mumo","doi":"10.3390/hydrology11070106","DOIUrl":null,"url":null,"abstract":"This work assesses the ability of nine Coupled Model Intercomparison Project phase 6 (CMIP6) High-Resolution Model Intercomparison Project (HighResMIP) models and their ensemble mean to reproduce precipitation extremes over East Africa for the period 1995–2014. The model datasets are assessed against two observation datasets: CHIRPS and GPCC. The precipitation indices considered are CDD, CWD, R1mm, R10mm, R20mm, SDII, R95p, PRCPTOT, and Rx1day. The overall results show that HighResMIP models reproduce annual variability fairly well; however, certain consistent biases are found across HighResMIP models, which tend to overestimate CWD and R1mm and underestimate CDD and SDII. The HighResMIP models are ranked using the Taylor diagram and Taylor Skill Score. The results show that the models reasonably simulate indices, such as PRCPTOT, R1mm, R10mm, R95p, and CDD; however, the simulation of SDII CWD, SDII, and R20mm is generally poor. They are CMCC-CM2-VHR4, HadGEM31-MM, HadGEM3-GC31-HM, and GFDL-CM4. Conversely, MPI-ESM1-2-XR and MPI-ESM1-2-HR show remarkable performance in simulating the OND season while underestimating the MAM season. A comparative analysis demonstrates that the MME has better accuracy than the individual models in the simulation of the various indices. The findings of the present study are important to establish the ability of HighResMIP data to reproduce extreme precipitation events over East Africa and, thus, help in decision making. However, caution should be exercised in the interpretation of the findings based on individual CMIP6 models over East Africa given the overall weakness observed in reproducing mean precipitation.","PeriodicalId":508746,"journal":{"name":"Hydrology","volume":"112 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How do CMIP6 HighResMIP Models Perform in Simulating Precipitation Extremes over East Africa?\",\"authors\":\"Hassen Babaousmail, B. Ayugi, K. T. C. Lim Kam Sian, Herijaona Hani‐Roge Hundilida Randriatsara, Richard Mumo\",\"doi\":\"10.3390/hydrology11070106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work assesses the ability of nine Coupled Model Intercomparison Project phase 6 (CMIP6) High-Resolution Model Intercomparison Project (HighResMIP) models and their ensemble mean to reproduce precipitation extremes over East Africa for the period 1995–2014. The model datasets are assessed against two observation datasets: CHIRPS and GPCC. The precipitation indices considered are CDD, CWD, R1mm, R10mm, R20mm, SDII, R95p, PRCPTOT, and Rx1day. The overall results show that HighResMIP models reproduce annual variability fairly well; however, certain consistent biases are found across HighResMIP models, which tend to overestimate CWD and R1mm and underestimate CDD and SDII. The HighResMIP models are ranked using the Taylor diagram and Taylor Skill Score. The results show that the models reasonably simulate indices, such as PRCPTOT, R1mm, R10mm, R95p, and CDD; however, the simulation of SDII CWD, SDII, and R20mm is generally poor. They are CMCC-CM2-VHR4, HadGEM31-MM, HadGEM3-GC31-HM, and GFDL-CM4. Conversely, MPI-ESM1-2-XR and MPI-ESM1-2-HR show remarkable performance in simulating the OND season while underestimating the MAM season. A comparative analysis demonstrates that the MME has better accuracy than the individual models in the simulation of the various indices. The findings of the present study are important to establish the ability of HighResMIP data to reproduce extreme precipitation events over East Africa and, thus, help in decision making. However, caution should be exercised in the interpretation of the findings based on individual CMIP6 models over East Africa given the overall weakness observed in reproducing mean precipitation.\",\"PeriodicalId\":508746,\"journal\":{\"name\":\"Hydrology\",\"volume\":\"112 37\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology11070106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology11070106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How do CMIP6 HighResMIP Models Perform in Simulating Precipitation Extremes over East Africa?
This work assesses the ability of nine Coupled Model Intercomparison Project phase 6 (CMIP6) High-Resolution Model Intercomparison Project (HighResMIP) models and their ensemble mean to reproduce precipitation extremes over East Africa for the period 1995–2014. The model datasets are assessed against two observation datasets: CHIRPS and GPCC. The precipitation indices considered are CDD, CWD, R1mm, R10mm, R20mm, SDII, R95p, PRCPTOT, and Rx1day. The overall results show that HighResMIP models reproduce annual variability fairly well; however, certain consistent biases are found across HighResMIP models, which tend to overestimate CWD and R1mm and underestimate CDD and SDII. The HighResMIP models are ranked using the Taylor diagram and Taylor Skill Score. The results show that the models reasonably simulate indices, such as PRCPTOT, R1mm, R10mm, R95p, and CDD; however, the simulation of SDII CWD, SDII, and R20mm is generally poor. They are CMCC-CM2-VHR4, HadGEM31-MM, HadGEM3-GC31-HM, and GFDL-CM4. Conversely, MPI-ESM1-2-XR and MPI-ESM1-2-HR show remarkable performance in simulating the OND season while underestimating the MAM season. A comparative analysis demonstrates that the MME has better accuracy than the individual models in the simulation of the various indices. The findings of the present study are important to establish the ability of HighResMIP data to reproduce extreme precipitation events over East Africa and, thus, help in decision making. However, caution should be exercised in the interpretation of the findings based on individual CMIP6 models over East Africa given the overall weakness observed in reproducing mean precipitation.