{"title":"使用任意拉格朗日-欧拉和参照节点坐标组合公式计算中枢-辐条系留卫星编队的部署动力学与控制","authors":"Yu Wang, Weiyi Fan, Hui Ren","doi":"10.1115/1.4066043","DOIUrl":null,"url":null,"abstract":"\n A novel modeling framework combining arbitrary Lagrange-Euler and referenced nodal coordinate formulation (ALE-RNCF) is proposed for deployment dynamics and control of a hub-spoke tethered satellite formation. The ALE-RNCF approach allows for an accurate analysis of the intricate coupling effect between the orbit, attitude, and deployment dynamics, and its strengths lie in overcoming the accuracy loss and low-efficiency issues when dealing with spatial and temporal multiscale problems. Specifically, the orbital and attitude motions are separated with vibrations of the variable-length ALE tethers through the RNCF, which is the main distinguishing feature over the widely-used absolute nodal coordinate formulation. To achieve stable deployment, the control torque is added to the central satellite by employing the proportional-differential algorithm, where the maximum tension of tethers or the spinning angular velocity is selected as the control object. Various cases with different deployment velocities, target tensions, and orbital heights are simulated and corresponding effects on the deployment performance are analyzed. The proposed ALE-RNCF approach provides a comprehensive understanding of the orbit-attitude-structure coupled behavior during the deployment of the hub-spoke tethered satellite formation and contributes to the development of effective control strategies.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deployment Dynamics and Control of a Hub-Spoke Tethered Satellite Formation Using Combined Arbitrary Lagrange-euler and Referenced Nodal Coordinate Formulation\",\"authors\":\"Yu Wang, Weiyi Fan, Hui Ren\",\"doi\":\"10.1115/1.4066043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A novel modeling framework combining arbitrary Lagrange-Euler and referenced nodal coordinate formulation (ALE-RNCF) is proposed for deployment dynamics and control of a hub-spoke tethered satellite formation. The ALE-RNCF approach allows for an accurate analysis of the intricate coupling effect between the orbit, attitude, and deployment dynamics, and its strengths lie in overcoming the accuracy loss and low-efficiency issues when dealing with spatial and temporal multiscale problems. Specifically, the orbital and attitude motions are separated with vibrations of the variable-length ALE tethers through the RNCF, which is the main distinguishing feature over the widely-used absolute nodal coordinate formulation. To achieve stable deployment, the control torque is added to the central satellite by employing the proportional-differential algorithm, where the maximum tension of tethers or the spinning angular velocity is selected as the control object. Various cases with different deployment velocities, target tensions, and orbital heights are simulated and corresponding effects on the deployment performance are analyzed. The proposed ALE-RNCF approach provides a comprehensive understanding of the orbit-attitude-structure coupled behavior during the deployment of the hub-spoke tethered satellite formation and contributes to the development of effective control strategies.\",\"PeriodicalId\":54858,\"journal\":{\"name\":\"Journal of Computational and Nonlinear Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Nonlinear Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4066043\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4066043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
针对辐辏系留卫星编队的部署动力学和控制,提出了一种结合任意拉格朗日-欧拉和参考节点坐标公式(ALE-RNCF)的新型建模框架。ALE-RNCF 方法可精确分析轨道、姿态和部署动力学之间错综复杂的耦合效应,其优势在于克服了处理空间和时间多尺度问题时的精度损失和低效率问题。具体来说,轨道和姿态运动通过 RNCF 与变长 ALE 系绳的振动分离,这是区别于广泛使用的绝对节点坐标公式的主要特征。为实现稳定部署,采用比例-差分算法向中心卫星添加控制扭矩,其中选择系绳的最大张力或旋转角速度作为控制目标。模拟了不同部署速度、目标张力和轨道高度的各种情况,并分析了对部署性能的相应影响。所提出的 ALE-RNCF 方法提供了对轮毂-辐条系留卫星编队部署过程中轨道-姿态-结构耦合行为的全面理解,有助于制定有效的控制策略。
Deployment Dynamics and Control of a Hub-Spoke Tethered Satellite Formation Using Combined Arbitrary Lagrange-euler and Referenced Nodal Coordinate Formulation
A novel modeling framework combining arbitrary Lagrange-Euler and referenced nodal coordinate formulation (ALE-RNCF) is proposed for deployment dynamics and control of a hub-spoke tethered satellite formation. The ALE-RNCF approach allows for an accurate analysis of the intricate coupling effect between the orbit, attitude, and deployment dynamics, and its strengths lie in overcoming the accuracy loss and low-efficiency issues when dealing with spatial and temporal multiscale problems. Specifically, the orbital and attitude motions are separated with vibrations of the variable-length ALE tethers through the RNCF, which is the main distinguishing feature over the widely-used absolute nodal coordinate formulation. To achieve stable deployment, the control torque is added to the central satellite by employing the proportional-differential algorithm, where the maximum tension of tethers or the spinning angular velocity is selected as the control object. Various cases with different deployment velocities, target tensions, and orbital heights are simulated and corresponding effects on the deployment performance are analyzed. The proposed ALE-RNCF approach provides a comprehensive understanding of the orbit-attitude-structure coupled behavior during the deployment of the hub-spoke tethered satellite formation and contributes to the development of effective control strategies.
期刊介绍:
The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.