用于反蒙特卡罗渲染的目标感知图像去噪

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2024-07-19 DOI:10.1145/3658182
Jeongmin Gu, Jonghee Back, Sung-Eui Yoon, Bochang Moon
{"title":"用于反蒙特卡罗渲染的目标感知图像去噪","authors":"Jeongmin Gu, Jonghee Back, Sung-Eui Yoon, Bochang Moon","doi":"10.1145/3658182","DOIUrl":null,"url":null,"abstract":"Physically based differentiable rendering allows an accurate light transport simulation to be differentiated with respect to the rendering input, i.e., scene parameters, and it enables inferring scene parameters from target images, e.g., photos or synthetic images, via an iterative optimization. However, this inverse Monte Carlo rendering inherits the fundamental problem of the Monte Carlo integration, i.e., noise, resulting in a slow optimization convergence. An appealing approach to addressing such noise is exploiting an image denoiser to improve optimization convergence. Unfortunately, the direct adoption of existing image denoisers designed for ordinary rendering scenarios can drive the optimization into undesirable local minima due to denoising bias. It motivates us to reformulate a new image denoiser specialized for inverse rendering. Unlike existing image denoisers, we conduct our denoising by considering the target images, i.e., specific information in inverse rendering. For our target-aware denoising, we determine our denoising weights via a linear regression technique using the target. We demonstrate that our denoiser enables inverse rendering optimization to infer scene parameters robustly through a diverse set of tests.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Target-Aware Image Denoising for Inverse Monte Carlo Rendering\",\"authors\":\"Jeongmin Gu, Jonghee Back, Sung-Eui Yoon, Bochang Moon\",\"doi\":\"10.1145/3658182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physically based differentiable rendering allows an accurate light transport simulation to be differentiated with respect to the rendering input, i.e., scene parameters, and it enables inferring scene parameters from target images, e.g., photos or synthetic images, via an iterative optimization. However, this inverse Monte Carlo rendering inherits the fundamental problem of the Monte Carlo integration, i.e., noise, resulting in a slow optimization convergence. An appealing approach to addressing such noise is exploiting an image denoiser to improve optimization convergence. Unfortunately, the direct adoption of existing image denoisers designed for ordinary rendering scenarios can drive the optimization into undesirable local minima due to denoising bias. It motivates us to reformulate a new image denoiser specialized for inverse rendering. Unlike existing image denoisers, we conduct our denoising by considering the target images, i.e., specific information in inverse rendering. For our target-aware denoising, we determine our denoising weights via a linear regression technique using the target. We demonstrate that our denoiser enables inverse rendering optimization to infer scene parameters robustly through a diverse set of tests.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658182\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658182","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

基于物理的可微分渲染技术可以根据渲染输入(即场景参数)对精确的光传输模拟进行微分,并通过迭代优化从目标图像(如照片或合成图像)中推断场景参数。然而,这种反蒙特卡罗渲染继承了蒙特卡罗积分的基本问题,即噪声,导致优化收敛速度缓慢。解决噪声问题的一个有效方法是利用图像去噪器来提高优化收敛速度。遗憾的是,直接采用为普通渲染场景设计的现有图像去噪器,会因去噪偏差而使优化进入不理想的局部最小值。这促使我们重新制定一种新的图像去噪器,专门用于反渲染。与现有的图像去噪器不同,我们通过考虑目标图像(即反渲染中的特定信息)来进行去噪。对于我们的目标感知去噪,我们通过使用目标的线性回归技术来确定我们的去噪权重。我们通过一系列不同的测试证明,我们的去噪器能使反渲染优化稳健地推断出场景参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Target-Aware Image Denoising for Inverse Monte Carlo Rendering
Physically based differentiable rendering allows an accurate light transport simulation to be differentiated with respect to the rendering input, i.e., scene parameters, and it enables inferring scene parameters from target images, e.g., photos or synthetic images, via an iterative optimization. However, this inverse Monte Carlo rendering inherits the fundamental problem of the Monte Carlo integration, i.e., noise, resulting in a slow optimization convergence. An appealing approach to addressing such noise is exploiting an image denoiser to improve optimization convergence. Unfortunately, the direct adoption of existing image denoisers designed for ordinary rendering scenarios can drive the optimization into undesirable local minima due to denoising bias. It motivates us to reformulate a new image denoiser specialized for inverse rendering. Unlike existing image denoisers, we conduct our denoising by considering the target images, i.e., specific information in inverse rendering. For our target-aware denoising, we determine our denoising weights via a linear regression technique using the target. We demonstrate that our denoiser enables inverse rendering optimization to infer scene parameters robustly through a diverse set of tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
PhysFiT: Physical-aware 3D Shape Understanding for Finishing Incomplete Assembly Synchronized tracing of primitive-based implicit volumes TriHuman : A Real-time and Controllable Tri-plane Representation for Detailed Human Geometry and Appearance Synthesis DAMO: A Deep Solver for Arbitrary Marker Configuration in Optical Motion Capture RNA: Relightable Neural Assets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1