利用递归变压器块实现时态稳定的 Metropolis 光传输去噪

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2024-07-19 DOI:10.1145/3658218
Chuhao Chen, Yuze He, Tzu-Mao Li
{"title":"利用递归变压器块实现时态稳定的 Metropolis 光传输去噪","authors":"Chuhao Chen, Yuze He, Tzu-Mao Li","doi":"10.1145/3658218","DOIUrl":null,"url":null,"abstract":"Metropolis Light Transport (MLT) is a global illumination algorithm that is well-known for rendering challenging scenes with intricate light paths. However, MLT methods tend to produce unpredictable correlation artifacts in images, which can introduce visual inconsistencies for animation rendering. This drawback also makes it challenging to denoise MLT renderings while maintaining temporal stability. We tackle this issue with modern learning-based methods and build a sequence denoiser combining the recurrent connections with the cutting-edge vision transformer architecture. We demonstrate that our sophisticated denoiser can consistently improve the quality and temporal stability of MLT renderings with difficult light paths. Our method is efficient and scalable for complex scene renderings that require high sample counts.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporally Stable Metropolis Light Transport Denoising using Recurrent Transformer Blocks\",\"authors\":\"Chuhao Chen, Yuze He, Tzu-Mao Li\",\"doi\":\"10.1145/3658218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metropolis Light Transport (MLT) is a global illumination algorithm that is well-known for rendering challenging scenes with intricate light paths. However, MLT methods tend to produce unpredictable correlation artifacts in images, which can introduce visual inconsistencies for animation rendering. This drawback also makes it challenging to denoise MLT renderings while maintaining temporal stability. We tackle this issue with modern learning-based methods and build a sequence denoiser combining the recurrent connections with the cutting-edge vision transformer architecture. We demonstrate that our sophisticated denoiser can consistently improve the quality and temporal stability of MLT renderings with difficult light paths. Our method is efficient and scalable for complex scene renderings that require high sample counts.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658218\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658218","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

Metropolis Light Transport(MLT)是一种全局照明算法,以渲染具有复杂光路的挑战性场景而闻名。然而,MLT 方法往往会在图像中产生不可预知的相关伪影,这会给动画渲染带来视觉上的不一致性。这一缺点也使得在保持时间稳定性的同时对 MLT 渲染进行去噪具有挑战性。我们利用基于现代学习的方法解决了这一问题,并建立了一种序列去噪器,将循环连接与最先进的视觉变换器架构相结合。我们证明,我们复杂的去噪器可以持续改善具有困难光路的 MLT 渲染的质量和时间稳定性。我们的方法高效且可扩展,适用于需要大量样本的复杂场景渲染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporally Stable Metropolis Light Transport Denoising using Recurrent Transformer Blocks
Metropolis Light Transport (MLT) is a global illumination algorithm that is well-known for rendering challenging scenes with intricate light paths. However, MLT methods tend to produce unpredictable correlation artifacts in images, which can introduce visual inconsistencies for animation rendering. This drawback also makes it challenging to denoise MLT renderings while maintaining temporal stability. We tackle this issue with modern learning-based methods and build a sequence denoiser combining the recurrent connections with the cutting-edge vision transformer architecture. We demonstrate that our sophisticated denoiser can consistently improve the quality and temporal stability of MLT renderings with difficult light paths. Our method is efficient and scalable for complex scene renderings that require high sample counts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
PhysFiT: Physical-aware 3D Shape Understanding for Finishing Incomplete Assembly Synchronized tracing of primitive-based implicit volumes TriHuman : A Real-time and Controllable Tri-plane Representation for Detailed Human Geometry and Appearance Synthesis DAMO: A Deep Solver for Arbitrary Marker Configuration in Optical Motion Capture RNA: Relightable Neural Assets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1