{"title":"利用递归变压器块实现时态稳定的 Metropolis 光传输去噪","authors":"Chuhao Chen, Yuze He, Tzu-Mao Li","doi":"10.1145/3658218","DOIUrl":null,"url":null,"abstract":"Metropolis Light Transport (MLT) is a global illumination algorithm that is well-known for rendering challenging scenes with intricate light paths. However, MLT methods tend to produce unpredictable correlation artifacts in images, which can introduce visual inconsistencies for animation rendering. This drawback also makes it challenging to denoise MLT renderings while maintaining temporal stability. We tackle this issue with modern learning-based methods and build a sequence denoiser combining the recurrent connections with the cutting-edge vision transformer architecture. We demonstrate that our sophisticated denoiser can consistently improve the quality and temporal stability of MLT renderings with difficult light paths. Our method is efficient and scalable for complex scene renderings that require high sample counts.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporally Stable Metropolis Light Transport Denoising using Recurrent Transformer Blocks\",\"authors\":\"Chuhao Chen, Yuze He, Tzu-Mao Li\",\"doi\":\"10.1145/3658218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metropolis Light Transport (MLT) is a global illumination algorithm that is well-known for rendering challenging scenes with intricate light paths. However, MLT methods tend to produce unpredictable correlation artifacts in images, which can introduce visual inconsistencies for animation rendering. This drawback also makes it challenging to denoise MLT renderings while maintaining temporal stability. We tackle this issue with modern learning-based methods and build a sequence denoiser combining the recurrent connections with the cutting-edge vision transformer architecture. We demonstrate that our sophisticated denoiser can consistently improve the quality and temporal stability of MLT renderings with difficult light paths. Our method is efficient and scalable for complex scene renderings that require high sample counts.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658218\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658218","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Temporally Stable Metropolis Light Transport Denoising using Recurrent Transformer Blocks
Metropolis Light Transport (MLT) is a global illumination algorithm that is well-known for rendering challenging scenes with intricate light paths. However, MLT methods tend to produce unpredictable correlation artifacts in images, which can introduce visual inconsistencies for animation rendering. This drawback also makes it challenging to denoise MLT renderings while maintaining temporal stability. We tackle this issue with modern learning-based methods and build a sequence denoiser combining the recurrent connections with the cutting-edge vision transformer architecture. We demonstrate that our sophisticated denoiser can consistently improve the quality and temporal stability of MLT renderings with difficult light paths. Our method is efficient and scalable for complex scene renderings that require high sample counts.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.