载体官能化对粘多酸催化直接加氢和催化转化加氢为己二酸的影响

Catalysts Pub Date : 2024-07-19 DOI:10.3390/catal14070465
Elisa Zanella, Stefano Franchi, Narmin Jabbarli, Ilaria Barlocco, M. Stucchi, Carlo Pirola
{"title":"载体官能化对粘多酸催化直接加氢和催化转化加氢为己二酸的影响","authors":"Elisa Zanella, Stefano Franchi, Narmin Jabbarli, Ilaria Barlocco, M. Stucchi, Carlo Pirola","doi":"10.3390/catal14070465","DOIUrl":null,"url":null,"abstract":"The liquid-phase hydrogenation of muconic acid (MA) to produce bio-adipic acid (AdA) is a prominent environmentally friendly chemical process, that can be achieved through two distinct methodologies: catalytic direct hydrogenation using molecular hydrogen (H2), or catalytic transfer hydrogenation utilizing a hydrogen donor. In this study, both approaches were explored, with formic acid (FA) selected as the hydrogen source for the latter method. Palladium-based catalysts were chosen for these processes. Metal’s nanoparticles (NPs) were supported on high-temperature heat-treated carbon nanofibers (HHT-CNFs) due to their known ability to enhance the stability of this metal catalyst. To assess the impact of support functionalization on catalyst stability, the HHT-CNFs were further functionalized with phosphorus and oxygen to obtain HHT-P and HHT-O, respectively. In the hydrogenation reaction, catalysts supported on functionalized supports exhibited higher catalytic activity and stability compared to Pd/HHT, reaching an AdA yield of about 80% in less than 2 h in batch reactor. The hydrogen-transfer process also yielded promising results, particularly with the 1%Pd/HHT-P catalyst. This work highlights the efficacy of support functionalization in improving catalyst performance, particularly when formic acid is used as a safer and more cost-effective hydrogen donor in the hydrogen-transfer process.","PeriodicalId":505577,"journal":{"name":"Catalysts","volume":"104 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Support Functionalization on Catalytic Direct Hydrogenation and Catalytic Transfer Hydrogenation of Muconic Acid to Adipic Acid\",\"authors\":\"Elisa Zanella, Stefano Franchi, Narmin Jabbarli, Ilaria Barlocco, M. Stucchi, Carlo Pirola\",\"doi\":\"10.3390/catal14070465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The liquid-phase hydrogenation of muconic acid (MA) to produce bio-adipic acid (AdA) is a prominent environmentally friendly chemical process, that can be achieved through two distinct methodologies: catalytic direct hydrogenation using molecular hydrogen (H2), or catalytic transfer hydrogenation utilizing a hydrogen donor. In this study, both approaches were explored, with formic acid (FA) selected as the hydrogen source for the latter method. Palladium-based catalysts were chosen for these processes. Metal’s nanoparticles (NPs) were supported on high-temperature heat-treated carbon nanofibers (HHT-CNFs) due to their known ability to enhance the stability of this metal catalyst. To assess the impact of support functionalization on catalyst stability, the HHT-CNFs were further functionalized with phosphorus and oxygen to obtain HHT-P and HHT-O, respectively. In the hydrogenation reaction, catalysts supported on functionalized supports exhibited higher catalytic activity and stability compared to Pd/HHT, reaching an AdA yield of about 80% in less than 2 h in batch reactor. The hydrogen-transfer process also yielded promising results, particularly with the 1%Pd/HHT-P catalyst. This work highlights the efficacy of support functionalization in improving catalyst performance, particularly when formic acid is used as a safer and more cost-effective hydrogen donor in the hydrogen-transfer process.\",\"PeriodicalId\":505577,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"104 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14070465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/catal14070465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过液相氢化粘多酸(MA)来生产生物己二酸(AdA)是一种突出的环境友好型化学工艺,可通过两种不同的方法实现:使用分子氢(H2)进行催化直接氢化,或利用氢供体进行催化转移氢化。本研究对这两种方法进行了探讨,并选择甲酸(FA)作为后一种方法的氢源。这些过程选择了钯基催化剂。金属纳米颗粒(NPs)被支撑在高温热处理碳纳米纤维(HHT-CNFs)上,因为众所周知,高温热处理碳纳米纤维能够增强这种金属催化剂的稳定性。为了评估支撑物官能化对催化剂稳定性的影响,对 HHT-CNF 进一步进行了磷和氧官能化,分别得到了 HHT-P 和 HHT-O。在氢化反应中,与 Pd/HHT 相比,支撑在功能化支撑物上的催化剂表现出更高的催化活性和稳定性,在间歇反应器中,不到 2 小时就能达到约 80% 的 AdA 收率。氢转移过程也取得了可喜的结果,尤其是使用 1%Pd/HHT-P 催化剂时。这项工作凸显了载体功能化在提高催化剂性能方面的功效,尤其是在氢转移过程中使用甲酸作为更安全、更经济的氢供体时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Support Functionalization on Catalytic Direct Hydrogenation and Catalytic Transfer Hydrogenation of Muconic Acid to Adipic Acid
The liquid-phase hydrogenation of muconic acid (MA) to produce bio-adipic acid (AdA) is a prominent environmentally friendly chemical process, that can be achieved through two distinct methodologies: catalytic direct hydrogenation using molecular hydrogen (H2), or catalytic transfer hydrogenation utilizing a hydrogen donor. In this study, both approaches were explored, with formic acid (FA) selected as the hydrogen source for the latter method. Palladium-based catalysts were chosen for these processes. Metal’s nanoparticles (NPs) were supported on high-temperature heat-treated carbon nanofibers (HHT-CNFs) due to their known ability to enhance the stability of this metal catalyst. To assess the impact of support functionalization on catalyst stability, the HHT-CNFs were further functionalized with phosphorus and oxygen to obtain HHT-P and HHT-O, respectively. In the hydrogenation reaction, catalysts supported on functionalized supports exhibited higher catalytic activity and stability compared to Pd/HHT, reaching an AdA yield of about 80% in less than 2 h in batch reactor. The hydrogen-transfer process also yielded promising results, particularly with the 1%Pd/HHT-P catalyst. This work highlights the efficacy of support functionalization in improving catalyst performance, particularly when formic acid is used as a safer and more cost-effective hydrogen donor in the hydrogen-transfer process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Facile Immersing Synthesis of Pt Single Atoms Supported on Sulfide for Bifunctional toward Seawater Electrolysis Construction of Cu2O-ZnO/Cellulose Composites for Enhancing the Photocatalytic Performance The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity BiVO4-Based Photocatalysts for the Degradation of Antibiotics in Wastewater: Calcination Role after Solvothermal Synthesis Green Synthesis of Copper Oxide Nanoparticles from Waste Solar Panels Using Piper nigrum Fruit Extract and Their Antibacterial Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1