Colin Groth, Marcus A. Magnor, S. Grogorick, Martin Eisemann, P. Didyk
{"title":"通过视线相关图像变形减轻晕机症状","authors":"Colin Groth, Marcus A. Magnor, S. Grogorick, Martin Eisemann, P. Didyk","doi":"10.1145/3658138","DOIUrl":null,"url":null,"abstract":"Virtual reality has ushered in a revolutionary era of immersive content perception. However, a persistent challenge in dynamic environments is the occurrence of cybersickness arising from a conflict between visual and vestibular cues. Prior techniques have demonstrated that limiting illusory self-motion, so-called vection, by blurring the peripheral part of images, introducing tunnel vision, or altering the camera path can effectively reduce the problem. Unfortunately, these methods often alter the user's experience with visible changes to the content. In this paper, we propose a new technique for reducing vection and combating cybersickness by subtly lowering the screen-space speed of objects in the user's peripheral vision. The method is motivated by our hypothesis that small modifications to the objects' velocity in the periphery and geometrical distortions in the peripheral vision can remain unnoticeable yet lead to reduced vection. This paper describes the experiments supporting this hypothesis and derives its limits. Furthermore, we present a method that exploits these findings by introducing subtle, screen-space geometrical distortions to animation frames to counteract the motion contributing to vection. We implement the method as a realtime post-processing step that can be integrated into existing rendering frameworks. The final validation of the technique and comparison to an alternative approach confirms its effectiveness in reducing cybersickness.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cybersickness Reduction via Gaze-Contingent Image Deformation\",\"authors\":\"Colin Groth, Marcus A. Magnor, S. Grogorick, Martin Eisemann, P. Didyk\",\"doi\":\"10.1145/3658138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual reality has ushered in a revolutionary era of immersive content perception. However, a persistent challenge in dynamic environments is the occurrence of cybersickness arising from a conflict between visual and vestibular cues. Prior techniques have demonstrated that limiting illusory self-motion, so-called vection, by blurring the peripheral part of images, introducing tunnel vision, or altering the camera path can effectively reduce the problem. Unfortunately, these methods often alter the user's experience with visible changes to the content. In this paper, we propose a new technique for reducing vection and combating cybersickness by subtly lowering the screen-space speed of objects in the user's peripheral vision. The method is motivated by our hypothesis that small modifications to the objects' velocity in the periphery and geometrical distortions in the peripheral vision can remain unnoticeable yet lead to reduced vection. This paper describes the experiments supporting this hypothesis and derives its limits. Furthermore, we present a method that exploits these findings by introducing subtle, screen-space geometrical distortions to animation frames to counteract the motion contributing to vection. We implement the method as a realtime post-processing step that can be integrated into existing rendering frameworks. The final validation of the technique and comparison to an alternative approach confirms its effectiveness in reducing cybersickness.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658138\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658138","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Cybersickness Reduction via Gaze-Contingent Image Deformation
Virtual reality has ushered in a revolutionary era of immersive content perception. However, a persistent challenge in dynamic environments is the occurrence of cybersickness arising from a conflict between visual and vestibular cues. Prior techniques have demonstrated that limiting illusory self-motion, so-called vection, by blurring the peripheral part of images, introducing tunnel vision, or altering the camera path can effectively reduce the problem. Unfortunately, these methods often alter the user's experience with visible changes to the content. In this paper, we propose a new technique for reducing vection and combating cybersickness by subtly lowering the screen-space speed of objects in the user's peripheral vision. The method is motivated by our hypothesis that small modifications to the objects' velocity in the periphery and geometrical distortions in the peripheral vision can remain unnoticeable yet lead to reduced vection. This paper describes the experiments supporting this hypothesis and derives its limits. Furthermore, we present a method that exploits these findings by introducing subtle, screen-space geometrical distortions to animation frames to counteract the motion contributing to vection. We implement the method as a realtime post-processing step that can be integrated into existing rendering frameworks. The final validation of the technique and comparison to an alternative approach confirms its effectiveness in reducing cybersickness.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.