人工神经网络辅助数学模型预测土壤应力-应变滞后环演变

Marta Bocheńska, P. Srokosz
{"title":"人工神经网络辅助数学模型预测土壤应力-应变滞后环演变","authors":"Marta Bocheńska, P. Srokosz","doi":"10.59440/ceer/190839","DOIUrl":null,"url":null,"abstract":"This study presents a novel approach to forecasting the evolution of hysteresis stress-strain response of different types of soils under repeated loading-unloading cycles. The forecasting is made solely from the knowledge of soil properties and loading parameters. Our approach combines mathematical modeling, regression analysis, and Deep Neural Networks (DNNs) to overcome the limitations of traditional DNN training. As a novelty, we propose a hysteresis loop evolution equation and design a family of DNNs to determine the parameters of this equation. Knowing the nature of the phenomenon, we can impose certain solution types and narrow the range of values, enabling the use of a very simple and efficient DNN model. The experimental data used to develop and test the model was obtained through Torsional Shear (TS) tests on soil samples. The model demonstrated high accuracy, with an average R² value of 0.9788 for testing and 0.9944 for training.","PeriodicalId":503238,"journal":{"name":"Civil and Environmental Engineering Reports","volume":"121 41","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network-aided Mathematical Model for Predicting Soil Stress-strain Hysteresis Loop Evolution\",\"authors\":\"Marta Bocheńska, P. Srokosz\",\"doi\":\"10.59440/ceer/190839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel approach to forecasting the evolution of hysteresis stress-strain response of different types of soils under repeated loading-unloading cycles. The forecasting is made solely from the knowledge of soil properties and loading parameters. Our approach combines mathematical modeling, regression analysis, and Deep Neural Networks (DNNs) to overcome the limitations of traditional DNN training. As a novelty, we propose a hysteresis loop evolution equation and design a family of DNNs to determine the parameters of this equation. Knowing the nature of the phenomenon, we can impose certain solution types and narrow the range of values, enabling the use of a very simple and efficient DNN model. The experimental data used to develop and test the model was obtained through Torsional Shear (TS) tests on soil samples. The model demonstrated high accuracy, with an average R² value of 0.9788 for testing and 0.9944 for training.\",\"PeriodicalId\":503238,\"journal\":{\"name\":\"Civil and Environmental Engineering Reports\",\"volume\":\"121 41\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil and Environmental Engineering Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59440/ceer/190839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59440/ceer/190839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新方法,用于预测不同类型土壤在重复加载-卸载循环下的滞后应力-应变响应演变。预测完全基于对土壤特性和加载参数的了解。我们的方法结合了数学建模、回归分析和深度神经网络(DNN),克服了传统 DNN 训练的局限性。作为一项创新,我们提出了滞后环演化方程,并设计了 DNNs 系列来确定该方程的参数。了解了现象的本质,我们就可以规定某些解类型并缩小取值范围,从而使用非常简单高效的 DNN 模型。用于开发和测试模型的实验数据是通过对土壤样本进行扭转剪切(TS)测试获得的。该模型具有很高的准确性,测试和训练的平均 R² 值分别为 0.9788 和 0.9944。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Neural Network-aided Mathematical Model for Predicting Soil Stress-strain Hysteresis Loop Evolution
This study presents a novel approach to forecasting the evolution of hysteresis stress-strain response of different types of soils under repeated loading-unloading cycles. The forecasting is made solely from the knowledge of soil properties and loading parameters. Our approach combines mathematical modeling, regression analysis, and Deep Neural Networks (DNNs) to overcome the limitations of traditional DNN training. As a novelty, we propose a hysteresis loop evolution equation and design a family of DNNs to determine the parameters of this equation. Knowing the nature of the phenomenon, we can impose certain solution types and narrow the range of values, enabling the use of a very simple and efficient DNN model. The experimental data used to develop and test the model was obtained through Torsional Shear (TS) tests on soil samples. The model demonstrated high accuracy, with an average R² value of 0.9788 for testing and 0.9944 for training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Neural Network-aided Mathematical Model for Predicting Soil Stress-strain Hysteresis Loop Evolution Technical Conditions of Diamond Vaults in Poland Prioritization of the Requirements Formulated in the European Standard EN 206 in Assessment of Concrete Quality - Multicriteria Analysis Using the AHP Method Proposal of an Encapsulation-led Disposal Method for Tannery Sludge – A Circularity Approach Identification of Criteria for Evaluating the Location of Youth Recreation and Leisure Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1