LightFormer:动态场景中以光为导向的全局神经渲染

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2024-07-19 DOI:10.1145/3658229
Haocheng Ren, Yuchi Huo, Yifan Peng, Hongtao Sheng, Weidong Xue, Hongxiang Huang, Jingzhen Lan, Rui Wang, Hujun Bao
{"title":"LightFormer:动态场景中以光为导向的全局神经渲染","authors":"Haocheng Ren, Yuchi Huo, Yifan Peng, Hongtao Sheng, Weidong Xue, Hongxiang Huang, Jingzhen Lan, Rui Wang, Hujun Bao","doi":"10.1145/3658229","DOIUrl":null,"url":null,"abstract":"\n The generation of global illumination in real time has been a long-standing challenge in the graphics community, particularly in dynamic scenes with complex illumination. Recent neural rendering techniques have shown great promise by utilizing neural networks to represent the illumination of scenes and then decoding the final radiance. However, incorporating object parameters into the representation may limit their effectiveness in handling fully dynamic scenes. This work presents a neural rendering approach, dubbed\n LightFormer\n , that can generate realistic global illumination for fully dynamic scenes, including dynamic lighting, materials, cameras, and animated objects, in real time. Inspired by classic many-lights methods, the proposed approach focuses on the neural representation of light sources in the scene rather than the entire scene, leading to the overall better generalizability. The neural prediction is achieved by leveraging the virtual point lights and shading clues for each light. Specifically, two stages are explored. In the light encoding stage, each light generates a set of virtual point lights in the scene, which are then encoded into an implicit neural light representation, along with screen-space shading clues like visibility. In the light gathering stage, a pixel-light attention mechanism composites all light representations for each shading point. Given the geometry and material representation, in tandem with the composed light representations of all lights, a lightweight neural network predicts the final radiance. Experimental results demonstrate that the proposed LightFormer can yield reasonable and realistic global illumination in fully dynamic scenes with real-time performance.\n","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LightFormer: Light-Oriented Global Neural Rendering in Dynamic Scene\",\"authors\":\"Haocheng Ren, Yuchi Huo, Yifan Peng, Hongtao Sheng, Weidong Xue, Hongxiang Huang, Jingzhen Lan, Rui Wang, Hujun Bao\",\"doi\":\"10.1145/3658229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The generation of global illumination in real time has been a long-standing challenge in the graphics community, particularly in dynamic scenes with complex illumination. Recent neural rendering techniques have shown great promise by utilizing neural networks to represent the illumination of scenes and then decoding the final radiance. However, incorporating object parameters into the representation may limit their effectiveness in handling fully dynamic scenes. This work presents a neural rendering approach, dubbed\\n LightFormer\\n , that can generate realistic global illumination for fully dynamic scenes, including dynamic lighting, materials, cameras, and animated objects, in real time. Inspired by classic many-lights methods, the proposed approach focuses on the neural representation of light sources in the scene rather than the entire scene, leading to the overall better generalizability. The neural prediction is achieved by leveraging the virtual point lights and shading clues for each light. Specifically, two stages are explored. In the light encoding stage, each light generates a set of virtual point lights in the scene, which are then encoded into an implicit neural light representation, along with screen-space shading clues like visibility. In the light gathering stage, a pixel-light attention mechanism composites all light representations for each shading point. Given the geometry and material representation, in tandem with the composed light representations of all lights, a lightweight neural network predicts the final radiance. Experimental results demonstrate that the proposed LightFormer can yield reasonable and realistic global illumination in fully dynamic scenes with real-time performance.\\n\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658229\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658229","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

实时生成全局光照一直是图形学界长期面临的挑战,尤其是在光照复杂的动态场景中。最近的神经渲染技术通过利用神经网络来表示场景的光照度,然后解码最终的辐射度,显示了巨大的前景。然而,将物体参数纳入表示可能会限制其处理全动态场景的效果。本研究提出了一种神经渲染方法,称为 LightFormer,它能为全动态场景实时生成逼真的全局照明,包括动态照明、材料、摄像机和动画对象。受经典多光源方法的启发,所提出的方法侧重于场景中光源的神经表征,而不是整个场景,从而在整体上具有更好的通用性。神经预测是通过利用虚拟点光源和每个光源的阴影线索来实现的。具体来说,我们探索了两个阶段。在光线编码阶段,每盏灯都会在场景中生成一组虚拟点光源,然后将其与屏幕空间的阴影线索(如可见度)一起编码为隐式神经光线表示。在光线收集阶段,像素-光线关注机制会对每个阴影点的所有光线表示进行合成。考虑到几何图形和材料表示法,以及所有光线的合成光线表示法,轻量级神经网络会预测最终的辐射度。实验结果表明,所提出的 LightFormer 能够在全动态场景中产生合理而逼真的全局照明,并具有实时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LightFormer: Light-Oriented Global Neural Rendering in Dynamic Scene
The generation of global illumination in real time has been a long-standing challenge in the graphics community, particularly in dynamic scenes with complex illumination. Recent neural rendering techniques have shown great promise by utilizing neural networks to represent the illumination of scenes and then decoding the final radiance. However, incorporating object parameters into the representation may limit their effectiveness in handling fully dynamic scenes. This work presents a neural rendering approach, dubbed LightFormer , that can generate realistic global illumination for fully dynamic scenes, including dynamic lighting, materials, cameras, and animated objects, in real time. Inspired by classic many-lights methods, the proposed approach focuses on the neural representation of light sources in the scene rather than the entire scene, leading to the overall better generalizability. The neural prediction is achieved by leveraging the virtual point lights and shading clues for each light. Specifically, two stages are explored. In the light encoding stage, each light generates a set of virtual point lights in the scene, which are then encoded into an implicit neural light representation, along with screen-space shading clues like visibility. In the light gathering stage, a pixel-light attention mechanism composites all light representations for each shading point. Given the geometry and material representation, in tandem with the composed light representations of all lights, a lightweight neural network predicts the final radiance. Experimental results demonstrate that the proposed LightFormer can yield reasonable and realistic global illumination in fully dynamic scenes with real-time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
PhysFiT: Physical-aware 3D Shape Understanding for Finishing Incomplete Assembly Synchronized tracing of primitive-based implicit volumes TriHuman : A Real-time and Controllable Tri-plane Representation for Detailed Human Geometry and Appearance Synthesis DAMO: A Deep Solver for Arbitrary Marker Configuration in Optical Motion Capture RNA: Relightable Neural Assets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1