Shree K. Nayar, Jeremy Klotz, Nikhil Nanda, Mikhail Fridberg
{"title":"蟋蟀自供电的鸣叫像素","authors":"Shree K. Nayar, Jeremy Klotz, Nikhil Nanda, Mikhail Fridberg","doi":"10.1145/3658196","DOIUrl":null,"url":null,"abstract":"We present a sensor that can measure light and wirelessly communicate the measurement, without the need for an external power source or a battery. Our sensor, called cricket, harvests energy from incident light. It is asleep for most of the time and transmits a short and strong radio frequency chirp when its harvested energy reaches a specific level. The carrier frequency of each cricket is fixed and reveals its identity, and the duration between consecutive chirps is a measure of the incident light level. We have characterized the radiometric response function, signal-to-noise ratio and dynamic range of cricket. We have experimentally verified that cricket can be miniaturized at the expense of increasing the duration between chirps. We show that a cube with a cricket on each of its sides can be used to estimate the centroid of any complex illumination, which has value in applications such as solar tracking. We also demonstrate the use of crickets for creating untethered sensor arrays that can produce video and control lighting for energy conservation. Finally, we modified cricket's circuit to develop battery-free electronic sunglasses that can instantly adapt to environmental illumination.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cricket: A Self-Powered Chirping Pixel\",\"authors\":\"Shree K. Nayar, Jeremy Klotz, Nikhil Nanda, Mikhail Fridberg\",\"doi\":\"10.1145/3658196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a sensor that can measure light and wirelessly communicate the measurement, without the need for an external power source or a battery. Our sensor, called cricket, harvests energy from incident light. It is asleep for most of the time and transmits a short and strong radio frequency chirp when its harvested energy reaches a specific level. The carrier frequency of each cricket is fixed and reveals its identity, and the duration between consecutive chirps is a measure of the incident light level. We have characterized the radiometric response function, signal-to-noise ratio and dynamic range of cricket. We have experimentally verified that cricket can be miniaturized at the expense of increasing the duration between chirps. We show that a cube with a cricket on each of its sides can be used to estimate the centroid of any complex illumination, which has value in applications such as solar tracking. We also demonstrate the use of crickets for creating untethered sensor arrays that can produce video and control lighting for energy conservation. Finally, we modified cricket's circuit to develop battery-free electronic sunglasses that can instantly adapt to environmental illumination.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658196\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658196","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
We present a sensor that can measure light and wirelessly communicate the measurement, without the need for an external power source or a battery. Our sensor, called cricket, harvests energy from incident light. It is asleep for most of the time and transmits a short and strong radio frequency chirp when its harvested energy reaches a specific level. The carrier frequency of each cricket is fixed and reveals its identity, and the duration between consecutive chirps is a measure of the incident light level. We have characterized the radiometric response function, signal-to-noise ratio and dynamic range of cricket. We have experimentally verified that cricket can be miniaturized at the expense of increasing the duration between chirps. We show that a cube with a cricket on each of its sides can be used to estimate the centroid of any complex illumination, which has value in applications such as solar tracking. We also demonstrate the use of crickets for creating untethered sensor arrays that can produce video and control lighting for energy conservation. Finally, we modified cricket's circuit to develop battery-free electronic sunglasses that can instantly adapt to environmental illumination.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.