利用碳酸盐岩储层地震弹性数据对岩石物理参数和孔隙连通性参数进行贝叶斯线性化反演

IF 1.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysics and Engineering Pub Date : 2024-07-19 DOI:10.1093/jge/gxae076
Jing Ba, Jiawei Chen, Qiang Guo, Wei Cheng, Zhifang Yang, Xiao Chen, Cong Luo
{"title":"利用碳酸盐岩储层地震弹性数据对岩石物理参数和孔隙连通性参数进行贝叶斯线性化反演","authors":"Jing Ba, Jiawei Chen, Qiang Guo, Wei Cheng, Zhifang Yang, Xiao Chen, Cong Luo","doi":"10.1093/jge/gxae076","DOIUrl":null,"url":null,"abstract":"\n Carbonate reservoirs are important targets for promoting the oil and gas reserve exploration and production in China. However, such reservoirs usually contain the developed complex pore structures, which heavily affect the precision in seismic prediction of petrophysical parameters. As one of the most important parameters to characterize reservoir rock, pore-related parameters can not only describe the pore structure, but also be used to evaluate the oil/gas bearing capabilities of potential reservoirs. The conventional rock-physics models (e.g. Gassmann's model) are formulated assuming fully-connected pores, which is unable to accurately capture the geometrical complexity in real rocks. In order to characterize the influences of multiple pores on the elastic properties, this work presents a rock-physics modelling method for carbonates, wherein the percentage composition of connected pores is equivalently quantified as the pore-connectivity factor. The method treats the pore-connectivity factor as an objective variable to characterize the spatial variations of pore structure. Specifically, the method combines the differential equivalent medium theory and Gassmann's model, and derives a linearized forward operator to quantitatively link porosity, water saturation, and pore-connectivity factor to seismic elastic parameters. According to the Bayesian linear inverse theory, the simultaneous estimation of petrophysical and pore-connectivity parameters is achieved. To characterize the statistical variations with multiple lithofacies, the Gaussian mixture model is employed to quantify the prior distribution of the objective variables. The posterior distribution of the objective variables is analytically expressed with the linearized forward operator. Numerical experiments show that the accuracy of the proposed method in predicting elastic parameters is improved. Compared with the conventional Xu-White model and the varying pore aspect ratio method, the accuracy of predicted P-wave velocity increases by 10.29% and 1.33%, respectively, and the predicted S-wave velocity increases by 6.44% and 0.03%, in terms of correlation coefficient. The application to the field data validates the effectiveness of the method, wherein the porosity and water saturation results help indicating the spatial distribution of potential reservoirs.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian linearized inversion for petrophysical and pore-connectivity parameters with seismic elastic data of carbonate reservoirs\",\"authors\":\"Jing Ba, Jiawei Chen, Qiang Guo, Wei Cheng, Zhifang Yang, Xiao Chen, Cong Luo\",\"doi\":\"10.1093/jge/gxae076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Carbonate reservoirs are important targets for promoting the oil and gas reserve exploration and production in China. However, such reservoirs usually contain the developed complex pore structures, which heavily affect the precision in seismic prediction of petrophysical parameters. As one of the most important parameters to characterize reservoir rock, pore-related parameters can not only describe the pore structure, but also be used to evaluate the oil/gas bearing capabilities of potential reservoirs. The conventional rock-physics models (e.g. Gassmann's model) are formulated assuming fully-connected pores, which is unable to accurately capture the geometrical complexity in real rocks. In order to characterize the influences of multiple pores on the elastic properties, this work presents a rock-physics modelling method for carbonates, wherein the percentage composition of connected pores is equivalently quantified as the pore-connectivity factor. The method treats the pore-connectivity factor as an objective variable to characterize the spatial variations of pore structure. Specifically, the method combines the differential equivalent medium theory and Gassmann's model, and derives a linearized forward operator to quantitatively link porosity, water saturation, and pore-connectivity factor to seismic elastic parameters. According to the Bayesian linear inverse theory, the simultaneous estimation of petrophysical and pore-connectivity parameters is achieved. To characterize the statistical variations with multiple lithofacies, the Gaussian mixture model is employed to quantify the prior distribution of the objective variables. The posterior distribution of the objective variables is analytically expressed with the linearized forward operator. Numerical experiments show that the accuracy of the proposed method in predicting elastic parameters is improved. Compared with the conventional Xu-White model and the varying pore aspect ratio method, the accuracy of predicted P-wave velocity increases by 10.29% and 1.33%, respectively, and the predicted S-wave velocity increases by 6.44% and 0.03%, in terms of correlation coefficient. The application to the field data validates the effectiveness of the method, wherein the porosity and water saturation results help indicating the spatial distribution of potential reservoirs.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxae076\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae076","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

碳酸盐岩储层是促进中国油气储量勘探和生产的重要目标。然而,这类储层通常含有发育复杂的孔隙结构,严重影响了岩石物理参数的地震预测精度。作为描述储层岩石特征的重要参数之一,孔隙相关参数不仅可以描述孔隙结构,还可用于评价潜在储层的含油/气能力。传统的岩石物理模型(如 Gassmann 模型)是在假设孔隙完全连通的情况下建立的,无法准确反映实际岩石的几何复杂性。为了描述多孔隙对弹性特性的影响,本研究提出了一种碳酸盐岩的岩石物理建模方法,其中连通孔隙的百分比组成被等同量化为孔隙连通系数。该方法将孔隙连通系数作为一个客观变量来描述孔隙结构的空间变化。具体来说,该方法结合了微分等效介质理论和 Gassmann 模型,推导出一个线性化的前向算子,将孔隙度、含水饱和度和孔隙连通系数与地震弹性参数定量联系起来。根据贝叶斯线性反演理论,实现了岩石物理参数和孔隙连通性参数的同步估算。为了描述多种岩性的统计变化特征,采用了高斯混合模型来量化目标变量的先验分布。目标变量的后验分布用线性化前向算子分析表示。数值实验表明,所提出的方法提高了预测弹性参数的精度。与传统的 Xu-White 模型和不同孔隙纵横比方法相比,预测 P 波速度的精度分别提高了 10.29% 和 1.33%,预测 S 波速度的精度提高了 6.44% 和 0.03%(相关系数)。对现场数据的应用验证了该方法的有效性,其中孔隙度和含水饱和度结果有助于显示潜在储层的空间分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian linearized inversion for petrophysical and pore-connectivity parameters with seismic elastic data of carbonate reservoirs
Carbonate reservoirs are important targets for promoting the oil and gas reserve exploration and production in China. However, such reservoirs usually contain the developed complex pore structures, which heavily affect the precision in seismic prediction of petrophysical parameters. As one of the most important parameters to characterize reservoir rock, pore-related parameters can not only describe the pore structure, but also be used to evaluate the oil/gas bearing capabilities of potential reservoirs. The conventional rock-physics models (e.g. Gassmann's model) are formulated assuming fully-connected pores, which is unable to accurately capture the geometrical complexity in real rocks. In order to characterize the influences of multiple pores on the elastic properties, this work presents a rock-physics modelling method for carbonates, wherein the percentage composition of connected pores is equivalently quantified as the pore-connectivity factor. The method treats the pore-connectivity factor as an objective variable to characterize the spatial variations of pore structure. Specifically, the method combines the differential equivalent medium theory and Gassmann's model, and derives a linearized forward operator to quantitatively link porosity, water saturation, and pore-connectivity factor to seismic elastic parameters. According to the Bayesian linear inverse theory, the simultaneous estimation of petrophysical and pore-connectivity parameters is achieved. To characterize the statistical variations with multiple lithofacies, the Gaussian mixture model is employed to quantify the prior distribution of the objective variables. The posterior distribution of the objective variables is analytically expressed with the linearized forward operator. Numerical experiments show that the accuracy of the proposed method in predicting elastic parameters is improved. Compared with the conventional Xu-White model and the varying pore aspect ratio method, the accuracy of predicted P-wave velocity increases by 10.29% and 1.33%, respectively, and the predicted S-wave velocity increases by 6.44% and 0.03%, in terms of correlation coefficient. The application to the field data validates the effectiveness of the method, wherein the porosity and water saturation results help indicating the spatial distribution of potential reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysics and Engineering
Journal of Geophysics and Engineering 工程技术-地球化学与地球物理
CiteScore
2.50
自引率
21.40%
发文量
87
审稿时长
4 months
期刊介绍: Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.
期刊最新文献
Numerical simulations of the acoustic and electrical properties of digital rocks based on tetrahedral unstructured mesh Simulation study on the radioactive logging responses in the spiral borehole Kirchhoff Prestack time migration of crooked-line seismic data 2-D acoustic equation prestack reverse-time migration based on optimized combined compact difference scheme Bayesian linearized inversion for petrophysical and pore-connectivity parameters with seismic elastic data of carbonate reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1