Yizhou Chen, Yushan Han, Jingyu Chen, Zhan Zhang, Alex Mcadams, Joseph Teran
{"title":"基于位置的准静态超弹性非线性高斯-赛德尔算法","authors":"Yizhou Chen, Yushan Han, Jingyu Chen, Zhan Zhang, Alex Mcadams, Joseph Teran","doi":"10.1145/3658154","DOIUrl":null,"url":null,"abstract":"Position based dynamics [Müller et al. 2007] is a powerful technique for simulating a variety of materials. Its primary strength is its robustness when run with limited computational budget. Even though PBD is based on the projection of static constraints, it does not work well for quasistatic problems. This is particularly relevant since the efficient creation of large data sets of plausible, but not necessarily accurate elastic equilibria is of increasing importance with the emergence of quasistatic neural networks [Bailey et al. 2018; Chentanez et al. 2020; Jin et al. 2022; Luo et al. 2020]. Recent work [Macklin et al. 2016] has shown that PBD can be related to the Gauss-Seidel approximation of a Lagrange multiplier formulation of backward Euler time stepping, where each constraint is solved/projected independently of the others in an iterative fashion. We show that a position-based, rather than constraint-based nonlinear Gauss-Seidel approach resolves a number of issues with PBD, particularly in the quasistatic setting. Our approach retains the essential PBD feature of stable behavior with constrained computational budgets, but also allows for convergent behavior with expanded budgets. We demonstrate the efficacy of our method on a variety of representative hyperelastic problems and show that both successive over relaxation (SOR), Chebyshev and multiresolution-based acceleration can be easily applied.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity\",\"authors\":\"Yizhou Chen, Yushan Han, Jingyu Chen, Zhan Zhang, Alex Mcadams, Joseph Teran\",\"doi\":\"10.1145/3658154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Position based dynamics [Müller et al. 2007] is a powerful technique for simulating a variety of materials. Its primary strength is its robustness when run with limited computational budget. Even though PBD is based on the projection of static constraints, it does not work well for quasistatic problems. This is particularly relevant since the efficient creation of large data sets of plausible, but not necessarily accurate elastic equilibria is of increasing importance with the emergence of quasistatic neural networks [Bailey et al. 2018; Chentanez et al. 2020; Jin et al. 2022; Luo et al. 2020]. Recent work [Macklin et al. 2016] has shown that PBD can be related to the Gauss-Seidel approximation of a Lagrange multiplier formulation of backward Euler time stepping, where each constraint is solved/projected independently of the others in an iterative fashion. We show that a position-based, rather than constraint-based nonlinear Gauss-Seidel approach resolves a number of issues with PBD, particularly in the quasistatic setting. Our approach retains the essential PBD feature of stable behavior with constrained computational budgets, but also allows for convergent behavior with expanded budgets. We demonstrate the efficacy of our method on a variety of representative hyperelastic problems and show that both successive over relaxation (SOR), Chebyshev and multiresolution-based acceleration can be easily applied.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658154\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658154","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity
Position based dynamics [Müller et al. 2007] is a powerful technique for simulating a variety of materials. Its primary strength is its robustness when run with limited computational budget. Even though PBD is based on the projection of static constraints, it does not work well for quasistatic problems. This is particularly relevant since the efficient creation of large data sets of plausible, but not necessarily accurate elastic equilibria is of increasing importance with the emergence of quasistatic neural networks [Bailey et al. 2018; Chentanez et al. 2020; Jin et al. 2022; Luo et al. 2020]. Recent work [Macklin et al. 2016] has shown that PBD can be related to the Gauss-Seidel approximation of a Lagrange multiplier formulation of backward Euler time stepping, where each constraint is solved/projected independently of the others in an iterative fashion. We show that a position-based, rather than constraint-based nonlinear Gauss-Seidel approach resolves a number of issues with PBD, particularly in the quasistatic setting. Our approach retains the essential PBD feature of stable behavior with constrained computational budgets, but also allows for convergent behavior with expanded budgets. We demonstrate the efficacy of our method on a variety of representative hyperelastic problems and show that both successive over relaxation (SOR), Chebyshev and multiresolution-based acceleration can be easily applied.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.