NeuralTO:半透明物体的神经重构和视图合成

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2024-07-19 DOI:10.1145/3658186
Yuxiang Cai, Jiaxiong Qiu, Zhong Li, Bo-Ning Ren
{"title":"NeuralTO:半透明物体的神经重构和视图合成","authors":"Yuxiang Cai, Jiaxiong Qiu, Zhong Li, Bo-Ning Ren","doi":"10.1145/3658186","DOIUrl":null,"url":null,"abstract":"Learning from multi-view images using neural implicit signed distance functions shows impressive performance on 3D Reconstruction of opaque objects. However, existing methods struggle to reconstruct accurate geometry when applied to translucent objects due to the non-negligible bias in their rendering function. To address the inaccuracies in the existing model, we have reparameterized the density function of the neural radiance field by incorporating an estimated constant extinction coefficient. This modification forms the basis of our innovative framework, which is geared towards highfidelity surface reconstruction and the novel-view synthesis of translucent objects. Our framework contains two stages. In the reconstruction stage, we introduce a novel weight function to achieve accurate surface geometry reconstruction. Following the recovery of geometry, the second phase involves learning the distinct scattering properties of the participating media to enhance rendering. A comprehensive dataset, comprising both synthetic and real translucent objects, has been built for conducting extensive experiments. Experiments reveal that our method outperforms existing approaches in terms of reconstruction and novel-view synthesis.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NeuralTO: Neural Reconstruction and View Synthesis of Translucent Objects\",\"authors\":\"Yuxiang Cai, Jiaxiong Qiu, Zhong Li, Bo-Ning Ren\",\"doi\":\"10.1145/3658186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning from multi-view images using neural implicit signed distance functions shows impressive performance on 3D Reconstruction of opaque objects. However, existing methods struggle to reconstruct accurate geometry when applied to translucent objects due to the non-negligible bias in their rendering function. To address the inaccuracies in the existing model, we have reparameterized the density function of the neural radiance field by incorporating an estimated constant extinction coefficient. This modification forms the basis of our innovative framework, which is geared towards highfidelity surface reconstruction and the novel-view synthesis of translucent objects. Our framework contains two stages. In the reconstruction stage, we introduce a novel weight function to achieve accurate surface geometry reconstruction. Following the recovery of geometry, the second phase involves learning the distinct scattering properties of the participating media to enhance rendering. A comprehensive dataset, comprising both synthetic and real translucent objects, has been built for conducting extensive experiments. Experiments reveal that our method outperforms existing approaches in terms of reconstruction and novel-view synthesis.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658186\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658186","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

使用神经隐式符号距离函数从多视角图像中学习,在不透明物体的三维重建方面表现出色。然而,现有方法在应用于半透明物体时,由于其渲染函数存在不可忽略的偏差,很难重建精确的几何图形。为了解决现有模型的不准确性,我们对神经辐射场的密度函数进行了重新参数化,加入了一个估计的恒定消光系数。这一修改构成了我们创新框架的基础,该框架面向半透明物体的高保真表面重建和新视角合成。我们的框架包含两个阶段。在重建阶段,我们引入了一个新颖的权重函数,以实现精确的表面几何重建。在恢复几何图形后,第二阶段涉及学习参与介质的不同散射特性,以增强渲染效果。为了进行广泛的实验,我们建立了一个由合成和真实半透明物体组成的综合数据集。实验表明,我们的方法在重建和新视图合成方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NeuralTO: Neural Reconstruction and View Synthesis of Translucent Objects
Learning from multi-view images using neural implicit signed distance functions shows impressive performance on 3D Reconstruction of opaque objects. However, existing methods struggle to reconstruct accurate geometry when applied to translucent objects due to the non-negligible bias in their rendering function. To address the inaccuracies in the existing model, we have reparameterized the density function of the neural radiance field by incorporating an estimated constant extinction coefficient. This modification forms the basis of our innovative framework, which is geared towards highfidelity surface reconstruction and the novel-view synthesis of translucent objects. Our framework contains two stages. In the reconstruction stage, we introduce a novel weight function to achieve accurate surface geometry reconstruction. Following the recovery of geometry, the second phase involves learning the distinct scattering properties of the participating media to enhance rendering. A comprehensive dataset, comprising both synthetic and real translucent objects, has been built for conducting extensive experiments. Experiments reveal that our method outperforms existing approaches in terms of reconstruction and novel-view synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
PhysFiT: Physical-aware 3D Shape Understanding for Finishing Incomplete Assembly Synchronized tracing of primitive-based implicit volumes TriHuman : A Real-time and Controllable Tri-plane Representation for Detailed Human Geometry and Appearance Synthesis DAMO: A Deep Solver for Arbitrary Marker Configuration in Optical Motion Capture RNA: Relightable Neural Assets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1