Nga Thi Thanh Pham, Thi The Doan, Thuc Duy Tran, Kien Ba Truong, Hao Thi Phuong Nguyen, Hang Vu-Thanh, Ha Pham-Thanh, Nam Pham-Quang, Hang Thu Nguyen, Quan Tran-Anh, Long Trinh-Tuan
{"title":"利用越南地区的全球降水测绘卫星数据分析热带气旋引起的降雨分布特征","authors":"Nga Thi Thanh Pham, Thi The Doan, Thuc Duy Tran, Kien Ba Truong, Hao Thi Phuong Nguyen, Hang Vu-Thanh, Ha Pham-Thanh, Nam Pham-Quang, Hang Thu Nguyen, Quan Tran-Anh, Long Trinh-Tuan","doi":"10.2166/wcc.2024.210","DOIUrl":null,"url":null,"abstract":"\n \n Tropical cyclones (TCs) contribute significantly to rainfall along Vietnam's coast, yet their complex precipitation structures remain poorly resolved, hindering forecast skill. This study analyzes TC rainfall distributions over the Vietnam East Sea from 2000 to 2020. The Global Satellite Mapping of Precipitation (GSMaP) product provides precipitation estimates with 0.1° resolution at hourly intervals, enabling detailed structural characterization. Rainfall features are analyzed across TC intensities, motion vectors, landfall locations, and interactions with cold surge (CS) air masses. Results show that total coverage differences are less significant than the intensity variations in narrow inner core rainbands. Asymmetric rainfall distributions concentrate in the front-right quadrant but shift after landfall. Northern Vietnam observes higher TC frequencies, but southern regions experience heavier extreme rains. Additionally, CS intrusions substantially intensify eyewall convection and redirect TC precipitation. These structural sensitivities visible in GSMaP observations elucidate the dynamics modulating TC rainfall. Characterizing multi-scale interactions and precipitation processes aids in forecasting and impact assessment for these high-risk storms with complex regional behavior.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of rainfall distribution induced by tropical cyclones using GSMaP data over the Vietnam region\",\"authors\":\"Nga Thi Thanh Pham, Thi The Doan, Thuc Duy Tran, Kien Ba Truong, Hao Thi Phuong Nguyen, Hang Vu-Thanh, Ha Pham-Thanh, Nam Pham-Quang, Hang Thu Nguyen, Quan Tran-Anh, Long Trinh-Tuan\",\"doi\":\"10.2166/wcc.2024.210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Tropical cyclones (TCs) contribute significantly to rainfall along Vietnam's coast, yet their complex precipitation structures remain poorly resolved, hindering forecast skill. This study analyzes TC rainfall distributions over the Vietnam East Sea from 2000 to 2020. The Global Satellite Mapping of Precipitation (GSMaP) product provides precipitation estimates with 0.1° resolution at hourly intervals, enabling detailed structural characterization. Rainfall features are analyzed across TC intensities, motion vectors, landfall locations, and interactions with cold surge (CS) air masses. Results show that total coverage differences are less significant than the intensity variations in narrow inner core rainbands. Asymmetric rainfall distributions concentrate in the front-right quadrant but shift after landfall. Northern Vietnam observes higher TC frequencies, but southern regions experience heavier extreme rains. Additionally, CS intrusions substantially intensify eyewall convection and redirect TC precipitation. These structural sensitivities visible in GSMaP observations elucidate the dynamics modulating TC rainfall. Characterizing multi-scale interactions and precipitation processes aids in forecasting and impact assessment for these high-risk storms with complex regional behavior.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2024.210\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.210","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Characteristics of rainfall distribution induced by tropical cyclones using GSMaP data over the Vietnam region
Tropical cyclones (TCs) contribute significantly to rainfall along Vietnam's coast, yet their complex precipitation structures remain poorly resolved, hindering forecast skill. This study analyzes TC rainfall distributions over the Vietnam East Sea from 2000 to 2020. The Global Satellite Mapping of Precipitation (GSMaP) product provides precipitation estimates with 0.1° resolution at hourly intervals, enabling detailed structural characterization. Rainfall features are analyzed across TC intensities, motion vectors, landfall locations, and interactions with cold surge (CS) air masses. Results show that total coverage differences are less significant than the intensity variations in narrow inner core rainbands. Asymmetric rainfall distributions concentrate in the front-right quadrant but shift after landfall. Northern Vietnam observes higher TC frequencies, but southern regions experience heavier extreme rains. Additionally, CS intrusions substantially intensify eyewall convection and redirect TC precipitation. These structural sensitivities visible in GSMaP observations elucidate the dynamics modulating TC rainfall. Characterizing multi-scale interactions and precipitation processes aids in forecasting and impact assessment for these high-risk storms with complex regional behavior.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.