{"title":"Floquet 散射的 Eikonal 近似值","authors":"Yaru Liu, Peng Zhang","doi":"10.1088/1572-9494/ad6550","DOIUrl":null,"url":null,"abstract":"\n The eikonal approximation (EA) is widely used in various high-energy scattering problems. In this work we generalize this approximation from the scattering problems with time-independent Hamiltonian to the ones with periodical Hamiltonians, {\\it i.e.}, the Floquet scattering problems. We further illustrate the applicability of our generalized EA via the scattering problem with respect to a shaking spherical square-well potential, by comparing the results given by this approximation and the exact ones. The generalized EA we developed is helpful for the research of manipulation of high-energy scattering processes with external field, {\\it e.g.}, the manipulation of atom, molecule or nuclear collisions or reactions via strong laser fields.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eikonal Approximation for Floquet Scattering\",\"authors\":\"Yaru Liu, Peng Zhang\",\"doi\":\"10.1088/1572-9494/ad6550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The eikonal approximation (EA) is widely used in various high-energy scattering problems. In this work we generalize this approximation from the scattering problems with time-independent Hamiltonian to the ones with periodical Hamiltonians, {\\\\it i.e.}, the Floquet scattering problems. We further illustrate the applicability of our generalized EA via the scattering problem with respect to a shaking spherical square-well potential, by comparing the results given by this approximation and the exact ones. The generalized EA we developed is helpful for the research of manipulation of high-energy scattering processes with external field, {\\\\it e.g.}, the manipulation of atom, molecule or nuclear collisions or reactions via strong laser fields.\",\"PeriodicalId\":508917,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad6550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad6550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
埃可纳近似(EA)被广泛应用于各种高能散射问题。在这项工作中,我们将这种近似从与时间无关的哈密顿散射问题推广到与周期哈密顿有关的问题,{it即},即Floquet散射问题。我们通过比较这种近似方法和精确方法得出的结果,进一步说明了我们的广义 EA 的适用性。我们开发的广义 EA 有助于研究利用外场操纵高能散射过程,{/it e.g.} 例如通过强激光场操纵原子、分子或核碰撞或反应。
The eikonal approximation (EA) is widely used in various high-energy scattering problems. In this work we generalize this approximation from the scattering problems with time-independent Hamiltonian to the ones with periodical Hamiltonians, {\it i.e.}, the Floquet scattering problems. We further illustrate the applicability of our generalized EA via the scattering problem with respect to a shaking spherical square-well potential, by comparing the results given by this approximation and the exact ones. The generalized EA we developed is helpful for the research of manipulation of high-energy scattering processes with external field, {\it e.g.}, the manipulation of atom, molecule or nuclear collisions or reactions via strong laser fields.