作为生物活性不对称 Beta-Diketone 染料递送平台的功能化 Palygorskite

Crystals Pub Date : 2024-07-18 DOI:10.3390/cryst14070659
Florentina Monica Raduly, V. Rădițoiu, Alina Raditoiu, Maria Grapin, R. Fierăscu, I. Răut, Mariana Constantin
{"title":"作为生物活性不对称 Beta-Diketone 染料递送平台的功能化 Palygorskite","authors":"Florentina Monica Raduly, V. Rădițoiu, Alina Raditoiu, Maria Grapin, R. Fierăscu, I. Răut, Mariana Constantin","doi":"10.3390/cryst14070659","DOIUrl":null,"url":null,"abstract":"Natural clay minerals are among the most versatile materials used in the biomedical field. Palygorskite has found various applications in this field, from the treatment of diarrheal diseases in the past to materials with antibacterial properties and platforms carrying bioactive compounds used in the treatment of diseases, cosmetic and healthcare products in the present. In this study, a possible delivery method of some bioactive asymmetric β-diketonic compounds is presented. Palygorskite modified with amphionic groups (P) and copper ions (PCu) was used as a platform to load bioactive curcumin derivatives (1 and 2). By varying the copper ions, the amounts of charged active compounds were monitored. Studies have shown that the hybrid materials resulting from the loading of 1 and 2 compounds on palygorskite with 30% copper ions (PCu30) can be used as delivery methods for these asymmetric curcumin derivatives, while palygorskite with 50% copper ions(PCu50) loaded with the same type of bioactive compounds has antibacterial properties.","PeriodicalId":505131,"journal":{"name":"Crystals","volume":" 59","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalized Palygorskite as a Delivery Platforms for Bioactive Asymmetric Beta-Diketone Dyes\",\"authors\":\"Florentina Monica Raduly, V. Rădițoiu, Alina Raditoiu, Maria Grapin, R. Fierăscu, I. Răut, Mariana Constantin\",\"doi\":\"10.3390/cryst14070659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural clay minerals are among the most versatile materials used in the biomedical field. Palygorskite has found various applications in this field, from the treatment of diarrheal diseases in the past to materials with antibacterial properties and platforms carrying bioactive compounds used in the treatment of diseases, cosmetic and healthcare products in the present. In this study, a possible delivery method of some bioactive asymmetric β-diketonic compounds is presented. Palygorskite modified with amphionic groups (P) and copper ions (PCu) was used as a platform to load bioactive curcumin derivatives (1 and 2). By varying the copper ions, the amounts of charged active compounds were monitored. Studies have shown that the hybrid materials resulting from the loading of 1 and 2 compounds on palygorskite with 30% copper ions (PCu30) can be used as delivery methods for these asymmetric curcumin derivatives, while palygorskite with 50% copper ions(PCu50) loaded with the same type of bioactive compounds has antibacterial properties.\",\"PeriodicalId\":505131,\"journal\":{\"name\":\"Crystals\",\"volume\":\" 59\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14070659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryst14070659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

天然粘土矿物是生物医学领域用途最广泛的材料之一。从过去治疗腹泻疾病,到现在用于治疗疾病、化妆品和保健品的具有抗菌特性的材料和携带生物活性化合物的平台,白云石在这一领域的应用多种多样。本研究提出了一种可能的生物活性不对称 β-二酮化合物递送方法。用两性基团(P)和铜离子(PCu)修饰的裴高石被用作负载生物活性姜黄素衍生物(1 和 2)的平台。通过改变铜离子的含量,对带电活性化合物的数量进行了监测。研究表明,在含有 30% 铜离子(PCu30)的钙钛矿上负载 1 和 2 化合物所产生的混合材料可用作这些不对称姜黄素衍生物的递送方法,而含有 50% 铜离子(PCu50)的钙钛矿负载同类生物活性化合物则具有抗菌特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functionalized Palygorskite as a Delivery Platforms for Bioactive Asymmetric Beta-Diketone Dyes
Natural clay minerals are among the most versatile materials used in the biomedical field. Palygorskite has found various applications in this field, from the treatment of diarrheal diseases in the past to materials with antibacterial properties and platforms carrying bioactive compounds used in the treatment of diseases, cosmetic and healthcare products in the present. In this study, a possible delivery method of some bioactive asymmetric β-diketonic compounds is presented. Palygorskite modified with amphionic groups (P) and copper ions (PCu) was used as a platform to load bioactive curcumin derivatives (1 and 2). By varying the copper ions, the amounts of charged active compounds were monitored. Studies have shown that the hybrid materials resulting from the loading of 1 and 2 compounds on palygorskite with 30% copper ions (PCu30) can be used as delivery methods for these asymmetric curcumin derivatives, while palygorskite with 50% copper ions(PCu50) loaded with the same type of bioactive compounds has antibacterial properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on Pulsed Gas Tungsten Arc Lap Welding Techniques for 304L Austenitic Stainless Steel Critical Aluminum Etch Material Amount for Local Droplet-Etched Nanohole-Based GaAs Quantum Dots Preparation, Thermal Behavior, and Conformational Stability of HMX/Cyclopentanone Cocrystallization Terahertz Dielectric Metasurface for Reconfigurable Multifunctional Holographic Dual-Mode Imaging Controlled by Graphene Impact of Density Variations and Growth Direction in 3D-Printed Titanium Alloys on Surface Topography and Bonding Performance with Dental Resins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1